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Abstract—Thanks to their exceptional flying maneuverability
and simple dynamics, multirotor systems have recently been de-
veloped and used for various applications. In low-cost prototypes
or highly-customized systems; however, the uncertainties in model
parameters may adversely affect the flight performance or lead to
instability. In this paper, we proposed a Lypunov-based adaptive
flight controller capable of robustly stabilizing a multicopter
with completely uncertain configurations and dynamics. We
experimentally demonstrate that the controller is capable of
stabilizing the vehicle with only crude knowledge of its rotor
positions, mass distribution, moment of inertia, and aerodynamic
coefficients. The results show that the attitude and altitude errors
initially caused by the inaccurate system model significantly
reduced after the activation of the adaptive scheme in real flights.

I. INTRODUCTION

Multirotor systems are mechanically simple, yet highly

manoeuvrable, they can hover in place, land and takeoff ver-

tically. These desirable qualities attract attention of scientists

and engineers to conduct research on them in light of many

potential applications such as in cinematography, agriculture,

transportation, and geographical mappings [1]–[6]. The most

popular and notable multirotor platform is a quadrotor, which

has four rotors vertically aligned and fixed to a rigid airframe.

These four rotors are usually placed in a square formation

with equal distances to the center of mass (CM) of the

whole vehicle. This symmetric configuration simplifies the

calculation required for flight control and stabilization. For

control, the quadrotor is commanded to adjust the rotational

speed of each rotor by altering the electrical signals to the DC

motors.

In most circumstances, the process of designing a flight con-

troller for such multi-rotor systems rely on the prior knowledge

of system properties such as the shape of a flying vehicle, the

mass distribution and the aerodynamic coefficients of those

propellers [7], [8]. In some situations, users or designers may

not be able to obtain the reliable estimates of mentioned system

parameters. This includes cases where a payload is attached

to the vehicle or some components of vehicle are imprecisely

manufactured (i.e, two similar propellers may exhibit vastly

different aeromechanic properties). Some quantities, such as

moment of inertia, are relatively difficult to measure or esti-

mate accurately, particularly when the shape of the vehicle
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is highly asymmetric (This leads to a non-diagonal inertia

matrix). Fortunately, the modeling uncertainties can potentially

be overcome by the implementation of adaptive methods in

flight controller. On this topic, thus far, there have been several

examples of the implementation of adaptive techniques in

flight control of multirotor systems. For example, Dydek et al.
proposed an adaptive controller for quadrotors when there is

actuator failure or physical damage causing some loss-of-thrust

[9]. For investigating the modeling uncertainty in a quadrotor,

Lee et al. directly used computer-simulations to numerically

compare the performance of a feedback linearization controller

and that of an adaptive sliding mode controller [10]. Bouadi

et al. studied a direct adaptive sliding mode control for the

quadrotors, where a centered white gaussian noise are added

to robotic parameters for testing the performance of handling

uncertain aerodynamic parameters and modeling inaccuracies

[11]. Most of these work, nevertheless, assume that only a few

specific partial system parameters are uncertain.

In this paper, we investigate multirotors with almost com-

pletely uncertain system parameters including the entire shape

of the vehicle. Specifically, we want to eliminate the need to

have a prior knowledge of exact rotor configuration, moment

of inertia, and propeller coefficients. In this study, we do not

directly use the relative distance between each rotor and the

CM of vehicle, alternatively we only rely on their reasonable

estimates. Starting from the estimated relative distances, we

can further have an initial estimate of its moment of inertia

and then formulate an initial dynamic matrix describing the

flight dynamics of the whole vehicle. Since this matrix is an

approximated one, an adaptive control method with a proven

Lyapunov stability is then implemented to enhance the flight

performance for hovering flights. For simplicity, a customed

quadrotor prototype is implemented only to verify the proposed

adaptive flight controller in this paper. This should not affect

the potentical applications of the proposed flight controller on

other multirotor systems. Furthermore, the proposed control

algorithms in this paper are relatively simple, efficient and,

therefore, can be easily implemented.

This paper will contribute to the field of micro aerial

vehicles by addressing the issues arising from the use of

imperfect prototypes and customized designs. The proposed

adaptive method will allow developers to rapidly and robustly

design a flight controller for highly customized systems or

improve the flight performance of an existing vehicle with an

added payload.
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II. DYNAMIC MODELING

In this part, dynamic model of a multirotor vehicle with

uncertain parameters will be outlined, together with a proposed

estimation strategy.
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Fig. 1. Concept of a multirotor vehicle with completely uncertain dynamics,
where ri denotes the relative distance between the ith rotor and the CM of
the whole vehicle and Pi denotes the position of each rotor in inertial frame.

A. Coordinate Frames

There are two reference frames required for describing the

flight dynamics. The first coordinate system is fixed and called

the Earth frame or inertial frame. The second reference frame

translates and rotates with the aircraft at the center of mass,

called the body frame. In this paper, symbols φ, θ and ψ (or

roll, pitch and yaw angles) are used to denote Euler angles

representing the rotation about the x-axis, y-axis and z-axis of

the multirotor system [12], [13]. The symbol ω = [ωx, ωy, ωz]
T

denotes the angular velocity in the body frame which is

generally different from the time-derivative of the Euler angles

or [φ̇, θ̇, ψ̇]T.

B. Dynamic Model of Multirotor Vehicle

Fig. 1 illustrates a schematic diagram of a quadrotor. Based

on the blade-element method [1], each spinning propeller

approximately produces a thrust force Ti = kΩ2
i and induces

a drag torque τdi = bΩ2
i (along the z-axis). Here, Ω is the

angular velocity of the propeller, k and b are thrust and torque

constants to be experimentally determined or calculated via the

blade element method [14]. In order to control and stabilize

the vehicle, various system parameters, such as the center of

mass (CM), the moment of inertia and rotor’s k and b must

be known [11]. The location of each rotor with respect to the

CM dictates the amount of torque the rotor contributes to the

dynamics of the vehicle. In this paper, we define the relative

distance ri as a vector originating from the CM location to the

ith rotor. Combining ri with other dynamic-related information

such as the spinning direction of each rotor, thrust constant k

and torque constant b, we can determine the total thrust force

T , and the total torque τ = [τφ, τθ, τψ]
T generated in terms of

Ω by a dynamic matrix as:








T
τφ
τθ
τψ









= A′u = A′









Ω2
1

·
·

Ω2
N









, (1)

where A′ ∈ R4×N is the so-called dynamic matrix. The

control input is defined as u = [Ω2
1, . . . ,Ω

2
N ]T ∈ RN×1 with

N denoting the number of rotors. In typical circumstances,

these ri are precisely known in advance and the rotors are

symmetrically arranged. In this research, we consider the case

where only the uncertain estimates of these ri are available.

If ri := [ri,x, ri,y]
T can be accurately estimated, the dynamic

matrix in (1) can be explicitly written as:

A′ =









k · · k
kr1,y · · krN,y
−kr1,x · · −krN,x
(−1)c1b · · (−1)cN b









, (2)

where the auxiliary coefficient symbol ci denotes the ith rotor’s

spinning direction (when the rotor spins counter-clockwise or

CCW, ci := 1 , and ci := 0 when the ith rotor spins clockwise

or CW) with index i = 1, . . . , N .

C. Estimation of the Moment of Inertia

Treating the vehicle as a rigid body, its rotational dynamics

follow the Euler’s rotation equation: τ = Iω̇ + ω × Iω where

“ω × Iω” → 0 when ω is small (near hovering condition).

In this paper, we limit our analysis for hovering flight (ω is

small). In fact, the configuration of the investigated multirotor

is asymmetric, which results in a non-diagonal inertia matrix

I . For simplicity, the initial estimate of the inertial matrix I
is assumed to be a diagonal matrix diag[Ixx, Iyy, Izz]. This

diagonal assumption is solely for the estimation purpose as

the proposed adaptive control scheme in Section III does not

require this simplification. In this situation, the force and

torques can be simplified as T ≈ m(z̈ + g), τφ ≈ Ixxω̇x,

τθ ≈ Iyyω̇y and τψ ≈ Izzω̇z . Thus the dynamic model (1) can

be rewritten as:








z̈ + g
ω̇x
ω̇y
ω̇z









=









m 0 0 0
0 Ixx 0 0
0 0 Iyy 0
0 0 0 Izz









−1

A′u

= Au = A[Ω2
1, ··,Ω

2
n]

T,

(3)

where we have defined the dynamic matrix A that takes into

account the moment of inertia. If the mass of the ith rotor

component (including ESC, propeller, etc.) is denoted as mi,

then we can approximately estimate the moment of inertia of

the vehicle in each diagonal element as I =
∑N
i=1[mi(ri)

2]. In

addition to the mass from each rotor, there are other auxiliary

mechanical parts including chassis and onboard controller on

such multirotor vehicle where the new inertial matrix (denoted

as I ′) needs to be known or estimated. In this paper, we directly

estimate it based on ri to simplify the whole formulation. If the



mass of such auxiliary mechanical part is estimated as γmi,

where γ > 0 is an estimated scalar constant, thus the mass of

a whole flying vehicle satisfies m = (N+γ)mi. Since the CM

of such unknown auxiliary mechanical part is likely inside the

convex hull of an object consisting of all rotors, which means

it is relatively closer to the CM of the whole flying vehicle.

We can approximate I ′ ≈
∑N
i=1[mi(ri)

2] with mi ≈
m

N+γ .

With considering the studied moment of inertia I ′ with

I ′xx ≈ m
N+γ

∑N
i=1(r

′

i,y)
2, I ′yy ≈ m

N+γ

∑N
i=1(r

′

i,x)
2 and I ′zz =

I ′xx + I ′yy, the matrix A in (3) can be rewritten as:













k
m

·· k
m

(N+γ)kr1,y
m

∑
N
i=1

(ri,y)2
··

(N+γ)krN,y

m
∑

N
i=1

(ri,y)2

−
(N+γ)kr1,x
m

∑
N
i=1

(ri,x)2
·· −

(N+γ)krN,x

m
∑

N
i=1

(ri,x)2

(N+γ)(−1)c1b

m
∑

N
i=1

[(ri,x)2+(ri,y)2]
·· (N+γ)(−1)cN b

m
∑

N
i=1

[(ri,x)2+(ri,y)2]













. (4)

III. CONTROLLER DESIGN

In contrast to the conventional approach, e.g., Mahony

and Corke [5] where the configuration of the vehicles and

the dynamics of each rotor are pre-identified and precisely

known, our focus in this paper is to stabilize a multirotor

vehicle with completely uncertain dynamics. These rotors may

be asymmetrically arranged on a horizontal plane but they

should vertically align. The asymmetric configuration renders

it difficult to evaluate the center of mass and the moment of

inertia. It follows that ri’s are not precisely known. Besides, in

our case, aerodynamic parameters, such as thrust and torque

constants (k, b), are only approximately known. Thus it is

challenging to obtain the dynamic matrix in (4). This makes

it increasingly difficult to achieve robust and accurate control

of the vehicle. In this section, the Lyapunov-based adaptive

control method is proposed to stabilize the flying vehicle

in hovering flights. Fig. 2 shows the block diagram of the

proposed control. The lateral controller is cascaded with the

adaptive controller, which includes the attitude controller and

the altitude (z) controller. Our focus is the adaptive controller.

The lateral controller is only for keeping the vehicle in the

designated area. Notice that, onboard IMU sensor can provide

the realtime orientation information for attitude controller and

the realtime position information is provided by motion capture

system (MOCAP).
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Controller

Lateral Attitude

x,y
setpoint

orientation information
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Flying Vehicle
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Fig. 2. Block diagram showing the overall structure of the controller.

A. Adaptive Control Strategy

Since there are many parameters that are not precisely

estimated, the adaptive control method is used for designing

the control law of input u. Assuming the thrust vector of all

rotor are aligned with the z-axis of the body frame, we obtain

the following by combining equations (3) and (4):








z̈
ω̇x
ω̇y
ω̇z









+









g
0
0
0









= β̈ + ~g = A









Ω2
1

·
·
Ω2
n









= Au, (5)

where symbols β̈ = [z̈, ω̇x, ω̇y, ω̇z]
T (or β = [z, φ, θ, ψ]T),

~g = [g, 0, 0, 0]T. Note that the dynamic matrix A is simply

a product of the inverse of the inertia matrix and A′, which

does not require the inertia matrix to be diagonal. Based on

the adaptive control theory [15], the control and adaptation law

can be designed as:

u = (Â)−1(β̈d − 2K
˙̃
β −K2β̃ + ~g),

˙̂
A = ΛsuT,

(6)

where Â is the estimate of A, β̃ = β − βd represents the

error of the current dynamics from the desired value βd, slide

mode parameter s =
˙̃
β +Kβ̃ is a quantity that quantifies the

errors in flight attitude and flight altitude we wish to minimize,

K = diag[kz, kaφ, kaθ, kaψ] is a positive-definite gain diagonal

matrix for the adaptive controller, and the positive-definite

diagonal matrix Λ = diag[λz, λaφ, λaθ, λaψ] is for adjusting

adaptive control rate.

Proof. If the dynamic matrix A is square (which means there

are only four rotors), then we define control law u = B̂(β̈+~g)
where the real value of A satisfy A = B−1, its estimate Â

satisfies Â = A + Ã,
˙̂
A = ˙̃A, B̂ = B + B̃ and

˙̂
B = ˙̃B.

The target is to make the slide mode parameter s (i.e.,
˙̃
β, β̃)

converges to zero, and the corresponding Lyapunov function

and its time-derivative term are chosen as:

V =
1

2
sTs+

1

2
Λ−1

trace(ÃTÃ),

V̇ =sTṡ+ Λ−1
trace( ˙̃ATÃ)

=sT[
¨̃
β +K

˙̃
β] + Λ−1

trace( ˙̃ATÃ)

=sT[−Ks+
¨̃
β +K

˙̃
β +Ks] + Λ−1

trace( ˙̃ATÃ)

=− sTKs+ sT(ÂB̂ − I)(β̈d − 2K
˙̃
β −K2β̃ + ~g)

− sTÃu+ Λ−1
trace( ˙̃ATÃ).

where “ÂB̂ = I” and “Λ−1
trace( ˙̃ATÃ) = sTÃu” are

chosen to hold for the purpose of satisfying the condition

V ≥ 0, V̇ = −sTKs ≤ 0, and thus
˙̃A =

˙̂
A = ΛsuT. Note

that, when V̇ → 0, we have s→ 0 and resulting
˙̂
A becoming

zero regardless whether Â → A or not. This means that the

above adaptive control can always minimize the sliding mode

parameter s, but it does not guarantee that Â → A. Finally,

we obtain the following:

u = (Â)−1(β̈ + ~g),

˙̂
A = ΛsuT,

β̈ = β̈d − 2K
˙̃
β −K2β̃.



If A ∈ R4×N is not a square matrix (the number of rotors

of multirotor N > 4), u = ÂT(ÂÂT)−1(β̈ + ~g) is substituted

with u ∈ RN×1 and the proof remains valid. �

B. Underlying Principle of the Proposed Control Strategy

To better understand the proposed controller, we look at the

scenario where the matrix A is precisely known (Â = A).

Assuming no other disturbances in flight, the substitution of

the control law in equation (6) to the dynamic equation (5)

will result in the following equations:


















z̈ = T/m− g = z̈d − 2kz(ż − żd)− k2z(z − zd),

φ̈ = ω̇x = φ̈d − 2kaφ(φ̇− φ̇d)− k2aφ(φ− φd),

θ̈ = ω̇y = θ̈d − 2kaθ(θ̇ − θ̇d)− k2aθ(θ − θd),

ψ̈ = ω̇z = ψ̈d − 2kaψ(ψ̇ − ψ̇d)− k2aψ(ψ − ψd),

(7)

where kz , kaφ, kaθ and kaψ may be different with each other

but all of them are positive scalar number. From equation

(7), it can be seen that altitude and attitude of the robot will

converge to their respective setpoints. Nevertheless this is no

longer guaranteed when matrix A is unknown (Â 6= A).

C. Lateral Controller

The purpose of the lateral controller is to calculate the

desired attitude setpoint (roll angle φ, pitch angle θ) based on

current obtained position information in order to ensure that the

vehicle stays in the flight arena during the experiment. These

angles will be supplied as setpoints for the adaptive/attitude

controller presented earlier. Generally, the lateral control law

in this paper is formulated based on:
[

ẍ
ÿ

]

=
T

m

[

sin(θ)
− sin(φ) cos(θ)

]

=

[

ẍd − kxyd (ẋ− ẋd)− kxyp (x− xd)
ÿd − kxyd (ẏ − ẏd)− kxyp (y − yd)

]

,

where kxyd , kxyp are positive gain values, [xd, yd]
T is the

position setpoint. Ideally, the desired roll angle φd and pitch

angle θd can be calculated based on the thrust T and ẍ,

ÿ. In hovering flight (T ≈ mg), the desired angles are

simply calculated as: φd ≈ [kxyd ẏ + kxyp (y − yd)]/g and

θd ≈ [−kxyd ẋ − kxyp (x − xd)]/g. Note that, the value of kxyp ,

kxyd should be smaller than the value of kaφ, kaθ and kaψ due

to the fact that the attitude controller should convergent faster

to the desired orientation (attitude setpoint at each instant of

time) which is provided by the lateral controller.

IV. EXPERIMENTS

A quadrotor prototype with an asymmetric configuration is

used to validate the proposed control strategy in this section.

A. Experimental Setup

Fig. 3 shows the flight arena. A ground-based computer

receives the realtime vehicle position information from the

MOCAP system (OptiTrack), and then wirelessly transmits it

to the flying vehicle.

The lateral controller and the adaptive controller were

implemented on a Pixhawk autopilot flight controller hard-

ware which is an industrial standard microcontroller that

Fig. 3. General diagram shows indoor flight arena, where ground computer
(in green square) provides position information (captured the MOCAP system
in red squares) and receives debug information wirelessly to and from the
flying vehicle (in blue square) respectively.

allows users to generate targeted binary codes based on Mat-

lab/Simulink models [16]. Command and debug information

between Pixhawk and ground computer are wirelessly trans-

mitted by using the UDP and serial communication protocols.

The multirotor system is a quadrotor flying vehicle shown

in Fig. 4, where the rotors M1 and M2 rotate in the CW

direction and rotors M3 and M4 rotate in the CCW direction.

The IMU module of Pixhawk autopilot can provide the real-

time orientation and angular velocity measurements of this

vehicle for the proposed attitude controller. However, since

the measurement of yaw angle ψ is inaccurate in indoor

environments, we opt to directly integrate the yaw rate ψ̇ to

estimate the yaw angle or heading of the robot.

CM10

bodyframe

Y X

CCWM�

CCWM�

CW

M�

CW

M�

45◦

L1L2

L3

L4

Fig. 4. A quadrotor prototype with its body frame defined, where Li denotes
the linkage between the ith rotor and Pixhawk autopilot.

B. Hovering Flights Experiments

In our multirotor prototype, we do not know vehicle’s exact

CM location and its moment of inertia, hence, we need to

estimate those ri = [ri,x, ri,y] firstly and then use them to ap-

proximate the vehicle’s moment of inertia (the initial estimate

assumes I to be diagonal). In our experiments, the initial CM

of the whole vehicle is assumed to be located underneath the

Pixhawk autopilot. For simplicity, the initial value of ‖ri‖2 is

assumed to be the length of linkage Li as shown in Fig. 4.

Based on visual observations, we estimate the initial lengths

of Li as L1 = ‖r1‖2 = 0.18 m, L2 = ‖r2‖2 = 0.18 m,
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lines are used to indicate the time when the adaptive control is activated. In addition, the magenta dotted line in the upper subplot denotes the desired altitude
setpoint and colorful dashed lines in other subplots denote the desired real-time attitude setpoints φd and θd provided from the lateral controller.

L3 = ‖r3‖2 = 0.18 m and L4 = ‖r4‖2 = 0.18 m (the actual

length ranges from ∼0.17 to ∼0.24 m via measurement). With

this estimation, the proposed controller will initially command

the rotors to generate the identical thrust. In our prototype

(m = 1.07 kg), the auxiliary mechanical part’s mass can not

be ignored and we estimate γ = 2. Thus we can get an initial

dynamic matrix Â which inevitably deviates from the actual

A. Due to limited space in our indoor flight environment (the

maximum height is 2 m), we used the RC remote to assist

the altitude controller by providing the feedforward term to

overcome the gravity.

Fig. 5. Images of the real quadrotor prototype during a hovering flight.

We performed three hovering flights with the proposed

adaptive controller. Each flight duration lasts over 60 seconds.

For comparison, the adaptive scheme was only activated in

the later portions of the flights. Note that, the lateral controller

in our experiments is only implemented to provide attitude

setpoints to prevent the vehicle escaping the flight area, thus

we only present the experimental results related to the attitude

and altitude of the vehicle. Fig. 5 illustrates several images of

the real quadrotor prototype for a hovering flight. The detailed

results are illustrated in Figs. 6, 7 and 8.

Fig. 6 illustrates the realtime altitude position and orienta-

tion information during a 75-second long hovering flight. The

top plot shows that in all three flights, the robot failed to reach

the desired altitude setpoint zd = 0.8 m before the adaptive

control scheme was enabled (prior to the black solid boundary

line). Once enabling the adaptive control, the matrix Â was

adaptively updated at a frequency of 50 Hz, The adaptive

scheme effectively adjusted the estimate of matrix A to reflect

the inaccuracy in the thrust coefficient k, resulting in the

vehicle quickly reaching the desired altitude. In other subplots,

it can be seen that, without the adaptive scheme, the attitude

of the vehicle failed to converge to the desired attitude setpoint

φd and θd as well. However, the attitude tracking performance

radically improved after the adaptive scheme was activated.

Similarly, the reason is that the adaptive control scheme can

gradually updated matrix Â such that the tracking errors in

attitude and altitude are minimized.

To further demonstrate the results, Fig. 7 shows us the real-

time error observations of four elements in β̃ = [z̃, φ̃, θ̃, ψ̃]T. In

the top plot, the error in altitude z̃ = z− zd converges to zero

after enabling the adaptive component. In the remaining three

subplots, attitude controller before enabling adaptive control

can not fully control the orientation angles where we see all

angular errors φ̃ = φ − φd, θ̃ = θ − θd and ψ̃ = ψ − ψd
are almost always either positive or negative in the first 23

seconds, especially the yaw angle. Once the adaptive control

is enabled, these angular errors start to converge to zero. In

fact, these CW spinning and CCW propellers in our quadrotor

prototype turned out to have vastly different physical profiles
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Fig. 7. Realtime observations of z̃, φ̃, θ̃ and ψ̃ in three experiments denoted
by three different colors during a 75s long hovering flight, where the back
solid lines are used to indicate the time when the adaptive control is activated.

and therefore have significantly different values of the torque

parameter bi. This was reflected in the resultant Â after the

adaptive component had been activated for several seconds.
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Fig. 8. Realtime partial Lyapunov function V ′
=

1

2
sTs in three experiments

denoted by three different colors during a 75s long hovering flight, the back
solid lines are used to indicate the time when the adaptive control is activated.

Fig. 8 illustrates the realtime values of the partial Lyapunov

function V ′ = 1
2s

Ts before and after enabling the adaptive

scheme was enabled (separated by black vertical lines) from

three flights. Since we do not know the actual value of A,

we can not calculate the Ã term in the original V . Three

experimental results all prove that the value V ′ before en-

abling adaptive control is evidently larger than those after the

adaptive scheme came into action, which evidently validates

the performance of our proposed control strategy starting from

an uncertain dynamic matrix.

V. DISCUSSION AND CONCLUSION

In this paper, we investigated multirotor systems with

completely uncertain dynamics, such as unknown mass dis-

tribution, moment of inertia, rotor configuration, imprecise

relative distance estimates and aerodynamic constants. We first

estimated the center of mass position to approximate the mass

distribution of vehicle. Then, the vehicle’s moment of inertia

was estimated based on relative distance between the rotors

and the CM. Thus we proposed a matrix which can feature

the dynamics of the vehicle. Lastly, the lateral, altitude and

attitude controller based on an adaptive control method was

formulated and implemented. Experimental results of hovering

flights on a quadrotor prototype verified the effectiveness of the

proposed control scheme. In future multirotor systems, we will

develop new algorithms for estimating the relative distances.

One potential solution is to assign each rotor with an IMU, then

to develop a data-fusing algorithm for extracting the relative

distance among those rotors based on multiple IMU readings.

Furthermore, multirotor prototypes with more than four rotors

will be developed in future for verifying our proposed adaptive

control strategy as well.
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