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Abstract—This article presents a robust brightness gradient-
based estimation strategy for small aerial robots. The proposed
nonlinear observer is capable of estimating the flight altitude
and ego-motion by the fusion of monocular vision and inertial
measurement unit feedback. The novelty primarily lies in the
implementation of the gradient-based featureless approach and
the direct use of photometric feedback in the state and output
vectors. Under the single-plane assumption, the proposed frame-
work permits the entire estimation process to be accomplished
efficiently in a single iterative step without the need for feature
detection and tracking or pre-computation of optic flow as
commonly seen in conventional methods. The nonlinear and
featureless implementation reduces the computational demand,
enlarges the region of attraction, and markedly improves the
robustness of the ego-motion estimation against scenes with
scarce features when compared to Kalman-based estimators and
feature-based methods. We conducted extensive flight experi-
ments with different flying patterns and textures to evaluate the
performance of the proposed observer. The results reveal that the
root-mean-square error in the altitude estimates is approximately
10% for flights at ⇡ 40� 130 cm above the ground, comparable
to feature-based estimators. Nevertheless, the devised observer
does better than feature-based methods when deployed on low-
textured scenes or with low-resolution blurry images.

Index Terms—optic-flow, direct gradient-based methods, iner-
tial measurement unit, nonlinear observer

I. INTRODUCTION

M ICRO Aerial Vehicles (MAVs) have gained tremendous
popularity in recent decades. The advancements are

driven by numerous civilian and defense applications, includ-
ing espionage, transportation, inspection, and agriculture. With
the progress in miniaturization and increasing integration of
robots in everyday life, MAVs are anticipated to operate in
urban and confined environments [1]. To this end, technical
challenges related to perception and navigation must be ad-
dressed to allow these small flying machines to safely negotiate
unstructured and GPS-denied environments.

Unlike terrestrial platforms that prevalently rely on multiple
sensors such as LiDAR and cameras to compute RGB-depth
images [2], small aerial robots are severely limited in payload
and power budget. Among MAVs, an integration of an onboard
camera and inertial sensor or Visual-Inertial Systems (VINS)
have emerged as a common framework for providing state
estimation and localization [3]–[7]. The fusion of readings

The authors are with the Department of Biomedical Engineering,
City University of Hong Kong, Hong Kong SAR, China (e-
mail: sxtan2-c@my.cityu.edu.hk; shanzhong4-c@my.cityu.edu.hk;
pakpong.c@cityu.edu.hk).

from an inertial measurement unit (IMU) with visual feedback
allows retrieval of the scale factor, leading to accurate pose
estimates through iterative refinements. Widely used strategies
involve feature detection, tracking, map reconstruction.

Despite the capability of existing map-based VINS to
provide rich and accurate information, there exist several
shortcomings. The robustness of feature-based methods criti-
cally depends on the ability to track features, landmarks, and
retain key frames over a prolonged period. In addition to the
computational resource required [8], the feature detection and
tracking process could be adversely affected by poor image
quality, motion blur, and low-textured scenes [9]. Besides, the
refinement over a large number of poses and landmarks is
demanding. This renders the solution unsuitable for smaller
MAVs with severely restricted payload and power [10]–[12].

An alternative lightweight vision-based strategy suitable for
ego-motion estimation for small drones is reactive navigation
[13]. These algorithms directly leverage apparent motion or
optic flow from most recent images to infer ego-motion when
other devices are absent. When incorporated with another sen-
sor modality, such as a time-of-flight camera [14], ultrasonic
sensor, [15] or IMU [16]–[18], true flight velocity and distance
can be estimated.

A. Related works and contributions

This paper addresses the optic flow-based ego-motion es-
timation problem for small flying robots. The omission of
mapping of reactive approaches not only reduces the com-
putational complexity, but also improves the robustness since
extended tracking of landmarks is no longer required. Most
existing reactive ego-motion estimation algorithms operate in
multiple stages. The first step is concerned with the feature
identification [19], [20], followed by the computation of optic
flow via feature tracking with the Lucas-Kanade algorithm
[21]. The optic flow is then fused with IMU measurements
through either an optimization-based [17], [22] or Extended
Kalman Filter-based [16] algorithm to produce ego-motion
estimates. Among these, the findings from [23], [24] suggest
that the feature detection is the most costly step, even when
the reconstruction of map points are taken into consideration.

To improve the robustness and efficiency of the ego-motion
estimation, an inspiration can be drawn from the direct or
featureless methods [25], [26] used by map-based VINS. In
such cases, the motion is inferred from the dense photometric
feedback, bypassing the feature identification and tracking.
The image intensity, even from areas where gradients are



IEEE/ASME TRANSACTION ON MECHATRONICS 2

small, is directly used in the optimization or filtering step
[27]. Since the entire image is exploited, it has been shown
to outperform feature-based methods in terms of robustness to
motion blur or low-textured images when implemented with
map-based localization [28]. Nevertheless, the direct methods
suffer from the elevated computational cost from the genera-
tion of dense map when applied in the context of localization.
This is alleviated by uses of patches of photometric feedback.
The patch-based or semi-direct approaches offer a balance
between robustness and complexity by making use of small
image patches around identified features [4].

To date, uses of the direct approach in lightweight estimators
for MAVs are still limited. In [29], the authors devised a
featureless method for controlling mobile robots based on
time-to-contact. For aerial vehicles, the featureless approach
was proposed to replace the optic flow measurements from
the feature tracking [30]. By taking image gradients, motion
information is extracted. When combined with readings from
an IMU through an EKF, estimates of flight altitude were
obtained. In these examples, the altitude is recovered in
multiple steps as the flow divergence (ratio of velocities in
x-y-z directions to the distance) are computed first, followed
by the altitude estimation.

This work takes a consolidated approach to tackle the ego-
motion estimation based on the featureless method. Unlike
previous direct estimation methods, where filters or observers
require the knowledge of pre-computed optic flow [17], [22]
or flow divergence (ratio of flight velocity to the distance) [30]
for each iteration, the entire ego-motion estimation for each
iteration herein is accomplished in a single step. To achieve
this, photometric feedback from an entire image is part of
the state vector and directly used as measurements of the
proposed estimator. The evolution of the state, output, and their
predictions are tightly coupled with the ego-motion and cor-
responding image gradients. With IMU readings, the scheme
efficiently estimates the inverse altitude, flow divergence, and
the plane’s normal in a single step assuming there exists only
a single plane under the camera’s view. The single plane
assumption is prevalent among optic flow-based ego-motion
estimation algorithms due to the exclusion of mapping [17],
[18], [22], [29], [30]. Nevertheless, the proposed framework
does not impose a restriction on the camera’s motion or the
plane’s inclination as found in [17], [18], [30].

In the proposed one-step featureless approach, photometric
feedback is modeled and included in the state and output.
This results in a large output vector whose length is equal
to the number of pixels observed. The size of the output
renders an EKF-based estimator impractical as the compu-
tation of the Kalman gain involves an inverse operation on
a matrix of which the dimension is dictated by the length
of the output vector. This necessitates the development of
a nonlinear observer (NLO) that produces the estimates of
flight altitude, flow divergence, and plane’s normal. With a
convergence proof, the NLO has certain advantages over EKF-
based algorithms. It provides a quantifiable convergence rate
(but lacking the estimates of the covariance) [22]. Without
linearization, a nonlinear approach possesses a large region
of attraction and therefore is less sensitive to disturbances or
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Fig. 1. A diagram of a moving camera, its associated image plane, and the
ground. The IMU’s frame is assumed coincident with the camera’s frame.

poor initial conditions [17], [22]. Overall, the use of dense pho-
tometric feedback provides improved robustness over feature-
based methods and the one-step implementation, which cannot
be achieved with indirect methods, radically streamlines the
estimation. It is conceivable that the efficiency and robustness
of the proposed ego-motion estimator potentially renders it a
suitable estimator for a lightweight reactive navigation strategy
to be employed by MAVs with acute computational constraints
such as small or insect-sized flying robots [10]–[12].

This paper is structured as follows. Section II provides
descriptions of the camera-centric odometry, optic flow, and
formulation of the equations of motion. Section III presents the
NLO and its convergence proof based on the state dynamics
from Section II in the discrete-time domain. The proposed
NLO is validated through a series of flight experiments in
section IV, accompanied by the analysis of the results and
the comparison to an EKF-based estimator, a feature-based
approach, and a map-based state-of-the-art method. Lastly, in
section V, a conclusion and future directions are discussed.

II. EGO-MOTION, OPTIC FLOW, AND DYNAMICS

A. Problem formulation

Consider a scenario where a moving camera observes points
on a plane as depicted in Fig. 1. The ego-motion problem
considered here begins with the formulation that relates the
distance between the camera and the plane, image intensity
values, and optic flow. In this work, the distance, relative orien-
tation between the camera and the plane, and flow divergence
[24] are regarded as unknowns to be estimated. Photometric
feedback or pixel irradiance from entire images is directly
treated as measurements. In addition, the proposed method
requires the knowledge of the camera-centric angular velocity
and linear acceleration which can be provided by an IMU
(through an accelerometer and a gyroscope). Without loss of
generality, the camera’s frame and IMU’s frame are assumed
to coincide. The framework can be applied in the context of
reactive navigation of mobile or aerial robots.

B. Continuous homography constraint

Fig. 1 shows a camera moving with respect to a stationary
plane with the camera frame and inertia frame. The camera
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frame is defined such that the Z axis aligns with the optical
axis. The camera-centric linear and angular velocities with
respect to the inertia frame are v = [vx, vy, vz]

T and ! =
[!x,!y,!z]

T . The apparent velocity of a point P=[X,Y, Z]T

on the plane due to the camera motion is Ṗ = [!]⇥P + v,

where [!]⇥ is the skew-symmetric matrix associated with !

[31]. We define n = [nx ny nz]
T as a camera-centric unit

vector normal to the plane. The orthogonal distance d between
the camera and the plane satisfies n

T
P /d = 1. Therefore,

Ṗ = [!]⇥P +
v

d
n

T
P . (1)

Camera images provide the projection of P , or p = [x, y, f ]T ,
where f is the focal length with an unknown scaling parameter
� [31], such that �p = P . The velocity of p on the image
plane satisfies Ṗ = �̇p+ �ṗ. With equation (1), this yields

ṗ = (Ṗ � �̇p)/� =
⇣
[!]⇥ +

v

d
n

T
⌘
p� �̇p/�. (2)

The quantity ṗ = [ṗx, ṗy, 0]
T , where ṗx and ṗy are the optic

flow of the point p [31], represents the apparent velocity on the
image plane. To eliminate the unknown inverse depth factor �,
the equation above is pre-multiplied with the skew-symmetric
matrix [p]⇥ and re-writen as:

[p]⇥ (ṗ� [!]⇥p) = [p]⇥
v

d
n

T
p. (3)

The resultant equation, also known as the continuous homog-
raphy constraint [22], [31], is suitable for the estimation of d,
v/d, and n via the one-step direct method below.

C. Optic flow and direct method

Suppose a camera provides images with N pixels in the
form of pixel irradiance, such that Ixy represents irradiance of
the pixel at location (x, y) at time t. The brightness constancy
constraint assumes Ixy does not change significantly during a
short period of time [25] or:

ṗx
@Ixy

@x
+ ṗy

@Ixy

@y
+

@Ixy

@t
= 0, (4)

in which @Ixy/@x and @Ixy/@y are the spatial irradiance
gradients, and @Ixy/@t is the rate of the pixel irradi-
ance. Here, ṗx and ṗy are optic flow as present by ṗ

in equation (2). We define a 3 ⇥ 1 image gradient vector
rI=

⇥
@Ixy/@x @Ixy/@y 0

⇤T and a basis vector e3 =⇥
0 0 1

⇤T , equation (4) can be re-written as

@Ixy

@t
f = �ṗx

@Ixy

@x
f � ṗy

@Ixy

@y
f = �e

T
3 [rI]⇥[p]⇥ṗ. (5)

Premultiplying equation (3) by e
T
3 [rI]⇥ and combining it

with equation (5) to eliminate of the optic flow terms yields
@Ixy

@t
f =� e

T
3 [rI]⇥[p]⇥

v

d

�
n

T
p+ [!]⇥p

�
. (6)

This provides a direct relation between the camera motion
(vdn

T , !) and the image gradients (@Ixy/@t, rI). Conse-
quently, no feature detection nor tracking of feature points is
required for distance estimation. This markedly reduces the
computational demand and enhances the robustness to low-
textured scenes and blurred images.

D. Equations of motion

To iteratively estimate d and other quantities of interest from
equation (6), we define the flow divergence vector #=v/d
and the inverse distance ↵ = d

�1. Instead of directly dealing
with d, the inverse distance parameterization is similar to the
treatment in [4], [22] and known to produce better results.
The camera provides measurements of the pixel irradiance
as an N ⇥ 1 vector obtained by stacking Ixy’s together:
I = {Ixy} 2 RN . The state and output vectors are defined as

X =
⇥
↵ #

T
n
T

I
T
⇤T

(7)
Y = CX = I, (8)

where C = [0N⇥7 1N⇥N ] (1 denotes an identity matrix). The
time evolution of X is described by the followings:

↵̇ =
�
#
T
n
�
↵, (9)

#̇ = a↵+
�
#
T
n
�
#+ [#]⇥!, (10)

ṅ = [n]⇥!, (11)

where we have used the fact that v̇ = a + [!]⇥v when a is
a camera-centric linear acceleration. Evaluation of a requires
the specific acceleration from the IMU and the knowledge of
the gravity vector in the camera frame (but not magnetometer
readings for the camera-centric approach). This is achieved
with the sensor fusion present in standard IMUs or flight
controllers (in which IMU biases are also taken care of). The
use of a unit vector n to represent the orientation of the plane
avoids issues related to the parameterization of a rotation.
Lastly, the dynamics of I is computed from equation (6) as

@Ixy

@t
=� (1/f) eT3 [rI]⇥[p]⇥

�
#n

T
p+ [!]⇥p

�
(12)

Together, equations (9)-(12) capture the dynamics of X as

Ẋ = F(X,!,a). (13)

In this work, both ! and a are provided by an IMU and
presumed known.

III. NONLINEAR OBSERVER

A. Formulation of the NLO

In this section, we establish a discrete-time nonlinear ob-
server for estimating the state vector (X) from IMU measure-
ments and image luminosity (Y ). To begin, let T denote a
sample time. Following notations are employed:

• A subscript (·)k indicates a quantity at the k
th time step.

• A variable ẑk|j , for example, describes the estimate of z
at the k

th time step given observations up to and including
the j

th time step. ẑk is a shorthand form of ẑk|k.
• Given an unknown quantity zk and its estimate ẑk, the

estimation error z̄k is defined as z̄k = zk � ẑk.
• For a vector zi 2 R3⇥1 for i = 1, 2, . . . , N , an operator

{zi}N represents a horizontal stacking operation of z
such that {z}N = [z1, z2, . . . , zN ] 2 R3⇥N .

In the discrete-time domain, the dynamics described by equa-
tion (13) is approximated using the the forward finite differ-
ence as the transition model

Xk+1 = Xk + F(Xk,!k,ak)T. (14)
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Fig. 2. A block diagram describing the input-output stability of the NLO with
z
�1 denoting the unit delay. Each equivalent subsystem Hi (·) is L stable,

implying the convergence of the estimation errors.

The nonlinear observer serves as the observation model to
iteratively predicts and updates the X̂k according to

X̂k+1|k = X̂k + F(X̂k,!k,ak)T

X̂k+1 = X̂k+1|k +Gk(Y k+1 � CX̂k+1|k), (15)

where

Gk =

2

6664

�2⇤↵�↵faTk�1

�
p
T
n̂k[p]⇥[rIk]⇥e3

 
N

�2⇤#�#f
�
p
T
n̂k[p]⇥[rIk]⇥e3

 
N

�2⇤n�nf

n
p#̂

T
k [p]⇥[rIk]⇥e3

o

N
1N⇥N

3

7775
, (16)

when ⇤i’s and �i’s are symmetric positive definite matrices
that satisfy the conditions: (i) ⇤i ! 1; and (ii) ⇤i�iT ⌧ 1.
Readers are referred to the Supplemental Materials for the
origin of equation (16).

B. Convergence of the NLO

Stability of the NLO is shown in multiple steps. The
proof shows that the estimate of each element in Xk se-
quentially asymtotically converges in the absence of process
and measurement noises. With disturbances, the estimation
errors remain bounded. For simplicity, process noise and the
error induced by the measurement noise in the term rIk

are neglected. Otherwise, they can be treated in a similar
manner to the measurement noise. With these considerations,
the convergences of Īk, n̄k, #̄k, and ↵̄k are shown in the
respective order as schematically depicted in Fig. 2. That
is, it can be shown that there exist equivalent subsystems
H (·)’s that are L stable. As a result, the entire system is
asymptotically stable. We introduce two following Lemmas to
assist with the convergence proof.

Lemma 1. A discrete-time system of Zk with an input Uk

and a sample time T :

Zk+1 =Zk � 2⇤�TA
T
kAkZk +DkT +BkUk, (17)

where A
T
k is full row rank, Dk is uniformly bounded, and

⇤,� are constant symmetric positive definite matrices, has

a globally asymptotically stable equilibrium point at Z = 0
when ⇤ ! 1 and ⇤�T ⌧ 1. In the presence of a bounded

input Uk, if Bk is finite-gain Lp stable for p 2 [1,1], then

Zk is also finite-gain Lp stable.

Proof. See the Supplemental Materials.

Lemma 2. A discrete-time system

Zk+1 = Zk �AkZk�1 +DkT +BkUk, (18)

in which 0 < Bk <
2
3 , and Dk is uniformly bounded as

|Dk| < D+, is Lyapunov stable at the equilibrium point Z =

0. Moreover, the system becomes asymptotically stable as T !
0. In the presence of a bounded input Uk, if Bk is finite-gain

Lp stable for p 2 [1,1], then Zk is also finite-gain Lp stable.

Proof. See the Supplemental Materials.
1) Convergence of Īk: Suppose �Ik represents the mea-

surement (image) noise such that Y k = Ik + �Ik, it can be
deduced from equations (15) and (16) that

Îk+1 = Îk+1|k + 1(Y k+1 � Îk+1|k) = Ik+1 + �Ik+1.

(19)

In other words, Īk = �Ik or the estimate of I immediately
converges to the true value in the absence of the measurement
noise regardless of the prediction Îk+1|k. Correspondingly, HI

in Fig. 2 is 1N⇥N .
2) Convergence of n̄k: The dynamics of n̂k+1 through the

update and correction steps from equations (11)-(16) are

n̂k+1 = n̂k + [n̂k]⇥ !kT

� 2⇤n�nfÂn,k(Y k+1 � Îk+1|k), (20)

where

Ân,k =
n
p#̂

T
k [p]⇥[rIk]⇥e3

o

N
. (21)

The term Y k+1 � Îk+1|k in equation (20) can be written
using the form provided by equation (12) and the fact that
e
T
3 [rI]⇥[p]⇥#nT

p = (p#T [p]⇥[rI]⇥e3)Tn, as a result,

Y k+1 � Îk+1|k = (Ik+1 � Ik)�
⇣
Îk+1|k � Îk

⌘
+�Ik

= �T

f

�
p#

T
k [p]⇥[rIk]⇥e3

 T

N
nk

+
T

f

n
p#̂

T
k [p]⇥[rIk]⇥e3

oT

N
n̂k +�Ik,

(22)

where �Ik = Īk+1 � Īk. To deal with the un-
known #k, we define a scalar quantity  k (x, y) for
each individual pixel at p = [x, y, f ]T as  k (x, y) =
#
T
k [p]⇥[rIk]T⇥e3/#̂

T
k [p]⇥[rIk]T⇥e3. Subsequently,

Y k+1 � Îk+1|k = �T

f
Â

T

n,k

✓
N

⇧ knk � n̂k

◆
+�Ik, (23)

where
N

⇧ k is the product of  k (x, y) for all N pixels (the
nominal value of

N

⇧ k when #̄k ! 0 is unity). With some
manipulation, substitution of equation (23) into (20) produces

n̂k+1 = n̂k + [n̂k]⇥ !kT � 2⇤n�nfAn,k�Ik

+ 2⇤n�nT Ân,kÂ
T

n,k

✓
N

⇧ knk � n̂k

◆
. (24)

Let ⌘k denote
N

⇧ knk�n̂k, we pre-multiply the discrete-time
version of equation (11): nk+1 = nk + [nk]⇥ !T by

N

⇧ k.
The difference between the outcome and equation (24) is

⌘k+1 = ⌘k � 2⇤n�nT Ân,kÂ
T

n,k⌘k +Dn,kT +Bn,k�Ik

(25)
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where

Dn,k =
N

⇧ k [nk]⇥ !k � [n̂k]⇥ !k,

Bn,k = 2⇤n�nfAn,k. (26)

According to Lemma 1, the asymptotic stability of ⌘k is
attained in the absence of �Ik with suitable gains (⇤n ! 1
and ⇤n�nT ⌧ 1) by treating Dn,k as bounded disturbances.
The condition requires Ân,k to be full row rank. This places
some limitations on the camera movement (#̂k) and image
gradients (@Ixy/@x, @Ixy/@y 6= 0) as suggested by equation
(21). The condition on camera motion is easily achieved on
a flying robot in practice. Furthermore, this rank constraint is
relaxed when the persistence of excitation is taken into account
(see the Supplemental Materials and [32]). In addition, with
the measurement noise �Ik, the system remains stable as long
as Bn,k or ⇤n�nAn,k remains bounded. The L gain of Bn,k

influences the stability properties of the equivalent subsystem
Hn in Fig. 2 as outlined in the Supplemental Materials. The
stability of ⌘k warrants the convergence of n̄k up to the
scale factor

N

⇧ k. Then, n̂k is obtained through normalization
after an update. In practice, it is adequate to perform the
normalization every ⇠ 100 steps.

3) Convergence of #̄k: The stability of #̄k is achieved
through a similar framework to that of n̄k without the need for
normalization. From equations (10) and (16), the estimation
error evolves according to

#̄k+1 = #̄k + 2⇤#�#fÂ#,k

⇣
Y k+1 � Îk+1|k

⌘
+D#,kT,

(27)

where

D#,k = ak↵k + #
T
knk#k + [#k]⇥ !k

� ak↵̂k � #̂
T
k n̂k#̂k �

h
#̂k

i

⇥
!k, and

Â#,k =
�
p
T
n̂k[p]⇥[rIk]

T
⇥e3

 
N
. (28)

The term Y k+1 � Îk+1|k in equation (27) can be treated
in a similar manner to equation (22), but with the fact that
e
T
3 [rI]⇥[p]⇥#nT

p = (pT
n[p]⇥[rI]T⇥e3)

T
#:

Y k+1 � Îk+1|k = �T

f

�
p
T
nk[p]⇥[rIk]

T
⇥e3

 T

N
#k

+
T

f

�
p
T
n̂k[p]⇥[rIk]

T
⇥e3

 T

N
#̂k +�Ik

= �T

f
Â

T

#,k#̄k � T

f
A

T
n,kn̄k +�Ik, (29)

Combining equations (27) and (29) yields

#̄k+1 = #̄k � 2⇤#�#T Â#,kÂ
T

#,k#̄k +D#,kT (30)

+B#,k

⇥
n̄

T
k �I

T
k

⇤T
,

where

B#,k = 2⇤#�#

h
�T Â#,kA

T
n,k fÂ#,k

i
. (31)

Applying Lemma 1, the estimation error #̄k is reduced in
the absence of disturbance (�Ik, n̄k ! 0) as long as A#,k

is full rank and the gain conditions are met. That is the

convergence of #̄k is obtained under the similar conditions
to that of n̄k, but by treating both �Ik and n̄k as inputs
of the equivalent subsystem H# as shown in Fig. 2 and the
Supplemental Materials.

4) Convergence of ↵̄k: Again, we start with the incremental
update of the estimation error ↵k� ↵̂k derived from equations
(9), (15), and (29):

↵̄k+1 = ↵̄k � 2⇤↵�↵Ta
T
k�1Â#,kÂ

T

#,k#̄k +D↵,kT (32)

� 2⇤↵�↵a
T
k�1Â#,k

⇣
TA

T
n,kn̄k � f�Ik

⌘

where

D↵,k = #
T
knk↵k � #̂

T
k n̂k↵̂k. (33)

Exploiting equation (10), the term #̄k in equation (32) can be
re-written:

#̄k = (#k � #k�1)�
⇣
#̂k � #̂k�1

⌘
+ #̄k�1

= ak�1↵̄k�1T + #̂k#̂
T
k n̄kT (34)

+
⇣
#̂
T
k n̂k � [!k]⇥

⌘
#̄kT + #̄k�1

Substituting this to equation (32) yields

↵̄k+1 = ↵̄k � 2⇤↵�↵T
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+D↵,kT +B↵,k

⇥
n̄

T
k #̄

T
k�1 #̄

T
k �I

T
k

⇤T
,

where

B↵,k =� 2⇤↵�↵a
T
k�1Â#,k
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The stability of ↵̄k is then attained according to Lemma
2 as long as 2⇤↵�↵T

2aTk�1A#,kA
T
#,kak�1 2

�
0, 2

3

�
, and

D↵,k is bounded. The first condition requires the gains ⇤↵�↵

to be sufficiently small, A#,k to be full rank as in section
III-B3, and the acceleration to be non-zero. The restriction
on the motion is similar and related to the rank condition of
An,k considered earlier. The boundedness of D↵,k is readily
achieved in physically feasible flights. Furthermore, as T ! 0,
the system is asymptotically stable, or the system remains
stable in the presence of non-zero n̄k, #̄k, and �Ik when
they are regarded as bounded inputs to the subsystem H↵ as
long as ⇤↵�↵ is finite.

In summary, the stability of the proposed observer is
achieved for each quantity in the state vector in the order
shown in Fig. 2. If present, estimation errors accumulate over
each step but the output remains bounded. Under suitable
gains, the system is globally asymptotically stable as T ! 0.
This renders the NLO more robust against disturbances and
initial errors compared to EKF-based strategies that suffer
from inaccuracies introduced by the linearization and restricted
region of attraction.
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Asctec Hummingbird Quadrotor

Raspberry Pi

Pi camera and IMU

Fig. 3. A Hummingbird Quadrotor carrying the IMU, Raspberry Pi and
camera for verification of the NLO. The IMU and camera are located next to
each other such that their coordinate frames can be assumed coincident.

IV. EXPERIMENTAL VERIFICATION

In this section, we perform indoor flight experiments to
validate the proposed nonlinear observer and compare the
performance to that of an EKF and a state-of-the-art map-
based approach. In-depth investigations on different flight
patterns, textures, computational requirements, and the impact
of the planar scene, are provided.

A. Experiment setup and implementation

For flight experiments, we employed a single-board com-
puter (Raspberry Pi 3 Model B) and the Pi Camera v2 with
the field of view of 24.4� ⇥ 19.0� to record 640 ⇥ 480-px
images at 90 Hz. An IMU (MPU9250) was used to provide the
angular velocity (!) and gravity integrated acceleration (a) at
the rate of 100 Hz, synchronized with the images using Python
scripts. After the camera calibration, the camera-IMU unit
was attached to an AscTec Hummingbird robot (Ascending
Technologies) with the downlooking camera as shown in Fig.
IV-A(a). The experiments were carried out in a 3.0⇥3.0⇥2.5
m arena equipped with six motion capture cameras (OptiTrack
Prime 13w) for tracking the position and orientation of the
quadrotor for the ground-truth measurements of ↵, #, and n

and robot’s position control as the estimation results were not
used for feedback. All data are time aligned.

To validate the proposed estimator, experiments were carried
out to demonstrate the estimation performance for various
flight patterns, textures, plane inclinations, etc. Each flight
contains 120 seconds of mid-air measurements suitable for
the estimator. After the experiments, the proposed NLO was
implemented in Python and applied to the collected images
and IMU measurements for estimation of the state vector
defined in equation (7) on the Raspberry Pi. The offline
implementation allows results from different estimators to be
directly compared. In the implementation, 640⇥480-px images
were uniformly downsampled to 160⇥120-px images after the
application of 5 ⇥ 5 averaging kernels. After that the spatial
gradients rI in equation (12) were then obtained by applying
an image convolution with normalized 3⇥ 3 Sobel kernels.

To provide benchmark comparisons, an EKF was employed
to provide estimations of the state vector from the image
luminosity measurements according to the nonlinear dynamics
described by equations (7)-(13). Compared to the proposed

NLO, EKF has two major drawbacks: (i) as a result of
the linearization, the stability is no longer guaranteed and
the convergence critically depends on the initial conditions;
(ii) the evaluation of Kalman gain involves an inversion of
an N ⇥ N matrix. This is impractically expensive even for
downsampled images, rendering the method unsuitable for
real-time operation, particular on platforms with limited power.
In contrast, it can be seen that the complexity of the proposed
method is dominated by simple matrix multiplications related
to matrices of size 7⇥N and N ⇥ 1 only.

B. Flight Experiments

1) Flights on horizontal plane: The first set of flight
experiments were performed on a horizontal ground. We
executed three flying patterns over four types of textures. Three
flights were carried out for each combination of texture and
flight pattern, producing 36 flights in total. Three hovering
flights were performed at 0.4 m, 0.8 m, 1.2 m altitude for
each texture, whereas for the other two flight patterns, all three
flights for each texture are nominally identical.

As illustrated in Fig. 5, four textures chosen include
checkerboard (CHB), ramp (RMP), sinusoid (SIN) and arti-
ficial leaves (LEAF). The first three textures were selected
to emphasize the difference between feature-based and direct
methods. The checkerboard, prevalent in computer vision
owing to pronounced edges and corners for easy detection,
features 6 ⇥ 6-cm tiles. The ramp and sinusoidal textures
used are grayscale patterns with the spatial intensity varying
according to 2D sinusoidal and ramp functions. The absence
of apparent corners and edges from these textures is intended
for evaluating one key benefit of the proposed gradient-
based approach when compared to feature-based methods.
The periods of the first three textures are 12 cm. For the
leaf pattern, it mimics a more realistic scene to evaluate the
performance of the NLO with less structured patterns.

Three flight patterns investigated here are hovering, vertical
trajectory, and 3D circular trajectory. During hovering flights,
the robot is anticipated to exhibit minimal movement, rep-
resenting the scenario where the proposed estimator is near
the unobservable condition. This is to demonstrate that slight
oscillations and vibrations provide sufficient excitation for the
estimator. For the vertical trajectory, the robot was commanded
to follow a sinusoidal trajectory at the altitude between 0.45-
0.95 m at 0.2 Hz. The altitude variation verifies the observer’s
ability to deal with changes in altitude and flow divergence in
the absence of horizontal motion. For the 3D flight pattern,
the robot followed a cyclic circular trajectory with the radius
of 0.65 m at 0.2 Hz, spanning the approximate volume of
0.5⇥ 0.5⇥ 0.4 m. The pattern, similar to the trajectory used
in [22], verifies the effectiveness of the proposed method in
practical situations in which the robot traverses in 3D space.

2) Flights on inclined plane: Since the proposed NLO
is capable of estimating relative plane orientation (n), six
additional flights were performed on a 10� incline affixed
with the CHB texture. The robot flew horizontally covering
the distance of 1.5m at 0.8 m altitude in a cyclic manner at
0.2 Hz to assess the quality of the distance and other estimates
when the robot traverses over a non-horizontal surface.
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Fig. 5. Estimation errors from 36 flights with various flight patterns and ground textures. Three flights were conducted for each flight pattern and ground
texture. The RMS errors from both NLO and EKF are computed from a 90-second duration, 30 s after the initialization of the filters for each dataset. As
for the EKF, only 23 out of 36 datasets result in converged estimates that are eligible for the calculation of the RMS errors. The numbers of datasets with
converged estimates for each combination of flight patterns and textures are labeled in brackets on top of each bars in the last row of the plots.

3) Flights over an occluded ground: The derivation of the
NLO relies on the assumption of a planar scene. To assess
the robustness and the performance of the NLO when such
condition is violated, three additional flights were carried out
over the CHB texture, partially occluded by a 25⇥28⇥30-cm
cardboard box. The robot flew vertically in a cyclic manner at
the altitude 0.45 to 0.95 m at the frequency of 0.2 Hz.

C. Estimation Results

Fig. 4 shows representative results from three flight patterns
over the SIN texture above a horizontal ground. The estimated
state vectors are compared to ground truth measurements
provided by the motion capture system to calculate the root
mean square (RMS) errors. It can be seen that the NLO
consistently produces better results than the EKF. For the dis-
tance estimates, the EKF displays larger steady-state errors and
slower convergence speed. For the flow divergence, the EKF
shows significant fluctuation while the NLO yields noticeably
smoother results. For the normal vector, the steady-state errors
from the EKF are also visibly larger. Among different flight
patterns, hovering flights estimation yields a much slower
convergence rate for the distance estimation.

1) Estimation results from flights over horizontal ground:

In 13 out of the 36 flights, the EKF estimates diverge, failing
to estimate the distance despite our best effort to adjust the
noise covariances. In contrast, the NLO displays robustness

with no divergence. The estimation errors are given in Fig.
5. The root-mean-square (RMS) errors are calculated from
90-s periods, 30 s after taking off to permit the estimates to
converge. For the EKF, the RMS errors are computed from 23
flights with converged estimates, while all 36 flights are taken
into consideration for the NLO. Overall, the RMS distance
errors from the EKF for three flight patterns are 16.7, 11.7,
and 15.3 cm, while for the NLO, the errors are 12.1, 10.2 and
10.7 cm. All data combined, the RMS error from the EKF is
28% larger than that of from the NLO.

For all four textures, Fig. 5 reveals that the NLO provides
reliable estimates of the distance and flow divergence. Alto-
gether, the RMS error of the estimated distance is approxi-
mately 10% at the 0.7 m average flight altitude and the RMS
error of the flow divergence is 0.16 s�1. The performance is
comparable to that of the state-of-the-art feature-based method
which yields the RMS distance error of 9.2 cm for a flight at
1 m altitude and the mean speed error of 0.1 ms�1 [22].

Among three flight patterns, the distance estimates from
the NLO corresponding to vertical and circular flights show
approximately 17% lower RMS errors than those from hov-
ering flights. The observed trend is reversed for the estimates
of the flow divergence, whereas the estimation errors of the
normal vector from three flight patterns are nearly indistin-
guishable. This is likely because the quality of the distance
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estimates benefits from motion or excitation. In contrast,
the flow divergence is tightly and directly coupled with the
measurements. Therefore, the estimates of the flow divergence
are detrimentally affected by motion-induced disturbances.

2) Estimation results from flights over an incline: The
results obtained from six flights above a 10� incline are
shown in Fig. 6. During the horizontal translation, the camera
perceived an alteration in the altitude, resembling the change
induced by the vertical motion above a horizontal plane. For
this reason, we benchmark the horizontal flight results against
the outcomes belonging to vertical flights with the CHB from
Section IV-B1. The major difference in two cases is high-
lighted in Fig. 6(a), which illustrates the RMS angle between
the camera’s optical axis and the true camera-centric plane’s
normal (11.4� versus 3.4�). The estimation results shown in
Fig. 6(b)-(d) reveals that the errors from both scenarios are
highly comparable. In case of the inclined surface, the NLO
demonstrate no significant change in the error of the plane
normal estimates, whereas the EKF evidently suffered with the
RMS error of nearly 20�. The results suggest that the NLO
is more robust than the EKF when there exists an appreciable
deviation between the camera axis and the plane’s normal.

3) Estimation results from flights with occlusion: Fig. 7
shows the results when the one plane assumption is violated in
comparison with the benchmark experiments. The benchmark
results were taken from the previous experimental set. Fig. 7(a)
shows the altitude estimates from the NLO and EKF , with
respect to the groundtruth. It can be seen that that the estimates
always underpredict the altitude. This is likely because the
observers detect the combined distance to the plane and the
occluding object. Fig. 7(b) highlights the average unoccluded
area in terms of the percentage of the camera’s field of view
during three flights, demonstrating that > 25% of the view was
obstructed by a box (refer to the Supplemental Materials for
the method used for computing the segregation). The results in
Fig. 7(c)-(e) reveal a noticeable degradation in the performance
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due to the provided reason. However, the proposed scheme
was still able to provide converged estimates, demonstrating
the robustness of the nonlinear approach.

D. Convergence rates among different flight patterns

According to section III-B, it has been concluded that
the observability of the system lies in the non-zero values
of # and the acceleration a. In hovering flights, however,
vibrations and fluctuations in velocity and acceleration turn out
to provide sufficient excitation for the estimation. Among three
flying patterns, both a and # associated with hovering flights
are still smaller in magnitude than in circular and vertical
flights. As a result, the distance converges at a slower rate
as predicted by the persistency of excitation condition given
in the Supplemental Materials.

E. Robustness to textures and image features

Unlike feature-based approaches that require prominent
corners and edges, the NLO leverages the motion and non-
zero image gradients, or rI (equation (5)), for the estimator to
be observable. The NLO is anticipated to perform better with
flights over RMP and SIN textures than over CHB texture
owing to the absence of spatial gradients between edges in
the CHB patttern. This is consistent with the results in Fig. 5,
where the trend can be observed for all flight patterns.

The use of image gradients offers robustness when bench-
marked against feature-based or semi-direct methods to scenes
with scarce features. In evidence, we applied two popular
feature detectors: FAST tracker [20] and Shi-Tomasi Corner
Detector [19], on the obtained flight images. Both algorithms
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Fig. 8. Results from two image resolutions. (a) RMS of distance error. (b)
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successfully identify multiple features in every image con-
taining the CHB texture. Nevertheless, among images with
RMP and SIN textures, the FAST detector fails to detect
more than four corners—the amount minimally required for
the Lucas-Kanade tracker [22], [33], in over 95% of the images
(186,934/194,400). The Shi-Tomasi detector fails to detect
more than four functional features in over 81% of the total
images (138,132/194,400) (refer to the Supplemental Materials
for example images and the description of functional features).
Although it is possible to adjust some parameters to slightly
enhance the detection in these images, the improvement does
not generalize over wider scenarios. The unreliability of the
feature detectors in these scenarios severely impair the per-
formance of feature-based methods. The findings corroborates
one primary advantage of the proposed direct approach over
existing featured-based and semi-direct methods.

F. Impact of image resolutions on time costs and RMS errors

Intended for platforms with limited capability, low com-
putational power is vital. Here, the time cost is inspected to
assess the efficiency. Both Python scripts for NLO and EKF
were implemented on a Raspberry Pi 3 Model B to process
data collected from nine circular flights from Section IV-B1.
Processing times were recorded. As presented in Fig. 8(a), for
the 160 ⇥ 120-px images used to produce the results in Fig.
4-6, the average computing times per frame are 69 ms and
6390 ms for the NLO and EKF. The substantial reduction in
the cost of the proposed NLO with respect to the EKF attests
the need for a nonlinear observer as a Kalman-based estimator
becomes inefficient when entire images are used.

Furthermore, to understand the trade-off between computa-
tional demand and accuracy, we repeated the comparison using
the same orignal images that were uniformly downsampled
to 80 ⇥ 60 px, instead of to 160 ⇥ 120 px, after applying
7 ⇥ 7 averaging kernels. As shown in Fig. 8(a), with the 4-
fold decrease in image pixels, the time costs for both NLO and
EKF reduce by a factor of 3 to 4. Nevertheless, the impact on
the estimation errors is less pronounced as illustrated in Fig.
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8(b)-(d). The decrease in image resolution magnifies the RMS
errors of the distance and flow divergence by ⇡20% and ⇡35%
and the influence on the normal vector is almost negligible.
Depending on platform requirements, the outcomes suggest
that low resolution images may provide sufficiently accurate
estimates while demanding considerably less resources.

G. Comparison to State-of-the-Art

To compare the performance of the proposed NLO against
a state-of-the-art approach, we selected the flight data with the
CJB pattern and a published dataset from [34] (with the top
flight speed of 5 m/s). Both sets of flight data were pipelined
to the NLO and the map-based VINS—VINS-mono [6]. Due
to the nature of map-based VINS, the estimate of the flight
altitude or distance to a flat terrain is not directly available
for comparison. Instead, we resort to using the estimates of
robo-centric flight velocity. For the NLO, flight velocity is a
product of the flow divergence # and the distance d.

As presented in Fig.9, for flight data with the checkerboard
pattern, the RMS in velocity errors from the NLO and VINS-
mono are highly comparable: 0.07 m/s and 0.06 m/s. For
the published datasets, the flight speed reaches up to 5 m/s,
rendering errors of the estimated velocity to be visibly larger.
The RMS errors from the NLO and VINS-mono remain
similar at 0.18 m/s and 0.15 m/s . In addition, for the CHB
pattern, the average computational times per frame are 3.7 ms
and 19.3 ms for the NLO and VINS-mono (both implemented
on a laptop with Intel i5-4440 processor). For the dataset from
[34], the average computing times are 6.7 ms and 31.3 ms. It
can be seen that the omission of mapping and the use of the
planar scene assumption renders the NLO is highly efficient
and suitable for platforms with limited computational power.

V. CONCLUSION AND FUTURE WORK

In this article, we have proposed a robust one-step ego-
motion estimation strategy that integrate monocular vision
and IMU measurements for feedback. When applied to aerial
robots, the framework is capable of estimating the flight
altitude and velocity for reactive navigation. The novelty lies
in the use of image intensities as part of the state and output
vectors. This eliminates the feature detection and tracking
process, allowing the entire estimation to be achieved in a
single step. As verified by several flight experiments, the
featureless approach is robust to low-textured scenes and the
proposed nonlinear observer offers superior efficiency when
compared to an EKF-based implementation.
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Similar to existing ego-motion estimation strategies for
reactive navigation, the proposed framework is still limited for
real-world deployment owing to the single-plane assumption.
Possible extensions of this work include the consideration of
multiple planes in the camera view. This would allow a flying
robot to negotiate a corridor while maintaining safe distances
to the ground and surrounding walls at the same time.
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A. Convergence Proofs

1) Proof of emma 1: Motivated by the method developed
in [35], a radially unbounded discrete-time storage function
can be created as:

Lk = Z
T
k⇤

�1
Zk > 0 8Zk 6= {0}. (37)

It follows that, in the absence of the input Uk,

Lk+1 � Lk = Z
T
k+1⇤

�1
Zk+1 �Z

T
k⇤

�1
Zk (38)

= �4TZT
kA

T
kAk�

⇣
1� T⇤�AT

kAk

⌘
Zk

+ 2TZT
k⇤

�1
⇣
1� 2T⇤�A

T
kAk

⌘
Dk

+ T
2
D

T
k⇤

�1
Dk.

Under the conditions (i) the disturbance Dk is bounded; (ii)
the gain ⇤ ! 1; and (iii) T� ! 0 or T⇤� remains
sufficiently small, the terms with Dk can be neglected. The
criterion required for the global asymptotic stability of the
system is A

T
kAk�

⇣
1� T⇤�AT

kAk

⌘
must be positive defi-

nite. This is readily satisfied when the mentioned conditions
are met and Ak is full rank. Moreover, with the consideration
of the persistency of excitation [32], the requirement on the
positive definiteness of A

T
kAk is relaxed to the existence of

two positive numbers K and �A that renders the following
condition satisfied:

k+KX

k

A
T
kAk�

⇣
1� T⇤�AT

kAk

⌘
� �AK1 > 0, 8k � 0.

(39)
In the presence of the input Uk, we can further consider

the system under the notion of input-output stability [36].
Based on the defined storage function Lk, as the sample
time is sufficiently small or T ! 0, there exists a Lyapunov
function V (t,Z,U = 0) that satisfies V = Z

T⇤�1
Z � 0

and V̇  �4�AZT
Z. According to the theorem on L stability

of of state models in [36], as Ż�Ż|U=0 = BU , if there exists
a non-negative constant �u such that kBUk  �u kUk ,then
the output Z satisfies

kZkLp
 � kUkLp

+ �, (40)

for some positive � and � that can be determined [36]. That
is, the system is finite-gain Lp stable for each p 2 [1,1].
The condition stated by equation (40) is equivalent to the
existstence of an Lp stable operator H that assigns each input
signal U to the corresponding output Z = H (U).

2) Proof of Lemma 2: Define Zk =
⇥
Zk+1 Zk

⇤T , the
system described by equation (18) is equivalent to

Zk+1 =


1 �Ak+1

1 0

�
Zk+


Dk+1

0

�
T+


Bk+1Uk+1

0

�
.

(41)
Consider a storage function

Lk = Z
T
k


1 � 1

2
� 1

2
1
2

�
Zk � 0, (42)

In the absence of the input Uk, it follows that

Lk+1 � Lk =Z
T
kE2Zk +E1ZkT + E0T

2
, (43)

where

E2 =
1

2


�1 1�Ak+1

1�Ak+1 2A2
k+1 � 1

�
(44)

E1 =


Dk+1

�2Ak+1Dk+1

�T

E0 = D
2
k+1.

Given that Ak+1 2
�
0, 2

3

�
and |Dk| < D+, it can be

shown that E1Zk < D+(Zk+1 + 2Ak+1Zk) < D+(Zk+1 +
4
3Zk)  5

3D+ |Zk| and E0 < D
2
+. In addition, under

these conditions, E2 is negative definite. Let �E denote
the largest (negative) eigenvalue of E2: �E = 1

2 (A
2
k+1 �

1 +
q

A
4
k+1 +A

2
k+1 � 2Ak+1 + 1), it can be verified that

�E 2 (�0.1096, 0). Together, we obtain

Lk+1 � Lk < �E |Zk|2 +
5

3
D+ |Zk|T +D

2
+T

2 (45)

< �E(|Zk|+
5

6�E
D+T )

2

+
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36�E
(36�E � 25)D2
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As a result, Lk+1 � Lk < 0 as long as |Zk| > � 1
6�E

(5 +p
25� 36�E)D+T , or Zk is stable in the sense of Lyapunov

[36]. Moreover, in the limit T ! 0, the system described by
equation (41) is globally asymptotically stable as Lk+1�Lk <

0.
In the continuous-time limit (T ! 0), we consider the

Lyapunov function candidate analogous to the discrete-time
storage function: V (t,Z,U = 0) = Z

T⇤�1
Z. This Ly-

punov function candidate satisfies the conditions V � 0 and
V̇  ��EZ

T
Z. The input-output stability of the system

when U 6= 0 can be analyzed similar to the proof of
lemma 1 through the framework in [36]. Using the fact
that

���Ż � Ż|U=0

��� = kBUk, if there exists a non-negative
constant �u such that kBUk  �u kUk ,then the output Z

satisfies
kZkLp

 � kUkLp
+ �, (46)

for some positive � and � that can be determined [36]. That
is, the system is finite-gain Lp stable for each p 2 [1,1].
The condition stated by equation (46) is equivalent to the
existstence of an Lp stable operator H that assigns each input
signal U to the corresponding output Z = H (U).
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B. Conventional Feature Detectors

Fig. 10 shows three different images taken during a flight
over a SIN chosen to illustrate the shortcomings of the
conventional feature detectors. The combination of poor image
resolution, motion blur, and the lack of sharp edges make these
images devoid of evident corners. In the majority of cases,
both FAST [20] and Shi-Tomasi [19] detectors classify only
point adjacent to the edges as features with highest qualities as
demonstrated in Fig. 10(a). It can be seen that these detected
features are unsuitable (not functional) for tracking purposes as
they will likely be out of frame in subsequent images due to the
motion. In addition, they do not correspond to actual features,
rendering them susceptible to poor tracking performance when
used with the Lucas- Kanade algorithm [33]. Fig. 10(b) shows
a rare (< 5%) example in cases which FAST identifies four
or more functional features. Similarly, Fig. 10(c) provides
another example in which Shi-Tomasi detector returns four
functional points located at some distance from edges. This
is only achieved in less than 20% of images with SIN or
RMP textures. These examples highlight possible advantages
of the featureless methods. While the outcomes shown here
do not necessarily reflect real-world scenarios, where there
are likely more prominent features visible in images, these
example images are reasonable representatives of images from
low-cost cameras or images degraded by motion blur.

C. Closed-up Estimation Results

In order to clearly differentiate the estimation performance
of the NLO and EKF in Fig. 4, Fig. 11 provides closed-up plots
of the flight data in Fig. 4, focusing on the last 30 seconds.
It can be seen that the distance estimation from the NLO is
superior to that of EKF. Other plots suggest that that the NLO
produces smoother estimates of the flow divergence with less
chattering compared to the EKF.

(a)

(b)

6 cm

(c)

Shi-TomasiFAST

Fig. 10. Result of Shi-tomasi corner detector and FAST corner detector. (a) a
representative case when both detectors find no functional feature away from
the image edges. (b) another case that FAST corner detector detects feasible
features however for Shi-tomasi corner detector, most of the features are on the
edge of the image. (c) shows another case when FAST method only captures
two features but Shi-tomasi corner detector works out fine. Each figure has a
resolution of 160⇥ 120.
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Fig. 11. Closed up plots of the estimation results (vertical flight) from Fig. 4.
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D. Calculation of Occluded Region

To compute the percentage of an occluded area in the
image, we post-processed the images by the application of the
Hough Transform to the entire images. This results in both
the boundaries of the boxes and the checkerboard pattern.
To segment the box boundaries, a thresholding process was
applied to only retain the shape of the box by considering
the color of nearby pixels. Only the edges belonging to the
edges of the brown cardboard box were kept. Thereafter, is
straightforward to calculate the percentage of the occluded
region in the image. Example results from each step are shown
in Fig. 12.

E. Derivation of the observer gain Gk

Herein, we provide some explanations on the form of Gk to
provide readers some intuition on its origin. The outline here
applies to the convergence of n̄k, but the convergence of other
estimates follow the same strategy in the gain design.

We focus on the gain used for updating n̂k, the third row
of Gk or Gk,3. To begin, observe that the time evolution of
the photometric values from equation (12) is

Ik+1 � Ik = � (1/f)
�
(eT3 [rIk]⇥[p]⇥#kn

T
k p)

T
 T

N
,

Recall that the operator {z}N stands for a horizontal
stacking operation of zi 2 R

3 such that {z}N =
[z1, z2, . . . , zN ] 2 R3⇥N . It can be seen that Ik+1 �
Ik is directly related to nk. To make use of this,
the portion

�
(eT3 [rIk]⇥[p]⇥#kn

T
k p)

T
 T

N
is re-arragned

to
�
p#

T
k [p]⇥[rIk]⇥e3

 T

N
nk. Hence, the innovation term⇣

Y k+1 � CX̂k+1|k

⌘
is approximately proportional to

⇣
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⌘
⇡
�
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 T

N
n̄k.

The intention is to ultimately obtain n̄k+1 / �n̄k+1. This
is approximately achieved by designing the third row of the
observer’s gain Gk,3 to be ⇡ �

�
p#

T
k [p]⇥[rIk]⇥e3

 
N

, such
that the condition

Gk,3

⇣
Y k+1 � CX̂k+1|k
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or Gk,3

⇣
Y k+1 � CX̂k+1|k

⌘
/ �n̄k is approximately met

as
�
p#

T
k [p]⇥[rIk]⇥e3

 
N

�
p#

T
k [p]⇥[rIk]⇥e3

 T

N
is positive

definite. In the actual proof and implementation, there are extra
terms emerging from the image noise and the fact that only
the estimate of #k is available. However, they can be taken
care of as detailed in the proof and the input-output stability
is achieved.

12 cm

(a)

(c)

(b)

borders found

Hough Tranform
 results

Fig. 12. Results of plane detector. (a) original image. (b) plane borders
detected by Hough Tranform. (c) plane borders detected by plane detector.


	I Introduction
	I-A Related works and contributions

	II Ego-motion, Optic Flow, and Dynamics
	II-A Problem formulation
	II-B Continuous homography constraint
	II-C Optic flow and direct method 
	II-D Equations of motion

	III Nonlinear Observer
	III-A Formulation of the NLO
	III-B Convergence of the NLO
	III-B1 Convergence of Lg
	III-B2 Convergence of Lg
	III-B3 Convergence of Lg
	III-B4 Convergence of Lg


	IV Experimental Verification
	IV-A Experiment setup and implementation 
	IV-B Flight Experiments
	IV-B1 Flights on horizontal plane
	IV-B2 Flights on inclined plane
	IV-B3 Flights over an occluded ground

	IV-C Estimation Results
	IV-C1 Estimation results from flights over horizontal ground
	IV-C2 Estimation results from flights over an incline
	IV-C3 Estimation results from flights with occlusion

	IV-D Convergence rates among different flight patterns
	IV-E Robustness to textures and image features
	IV-F Impact of image resolutions on time costs and RMS errors
	IV-G Comparison to State-of-the-Art

	V Conclusion and Future Work
	References
	Biographies
	Shixin Tan
	Shangkun Zhong
	Pakpong Chirarattananon
	V-A Convergence Proofs 
	V-A1 Proof of emma 1
	V-A2 Proof of Lemma 2

	V-B Conventional Feature Detectors
	V-C Closed-up Estimation Results
	V-D Calculation of Occluded Region
	V-E Derivation of the observer gain Lg


