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Abstract

In this paper, an image-based visual servoing (IBVS) control strategy with a

virtual camera frame is proposed for multirotor vehicles. Compared to previous

works, the proposed IBVS controller requires minimal sensors in the position

loop: a monocular camera and gyroscope. To achieve this, the visual feature

projected onto the virtual image plane is associated with the plane’s normal in-

stead of relying on an additional attitude estimator and prior knowledge of the

plane’s inclination. Furthermore, we show that the ratio velocity, when scaled

by the image moment, exhibits a similar dynamics to the linear velocity. The

finding allows the quantity to be recovered and used for control with a monoc-

ular camera without other metric cues. To provide feedback for the controller,

an Extended Kalman filter for estimating the ratio velocity, target plane’s in-

clination, and relative rotation between the current and reference camera frame

is developed using only monocular vision and gyroscopic measurements. To

validate the proposed controller and estimation strategy, both simulation and

real-world flight experiments were carried out. The quadrotor smoothly and

robustly tracked both dynamic horizontal and static inclined targets, without

prior knowledge of the target’s inclination. Overall, the proposed regime offers

a lightweight and robust alternative IBVS solution for rotorcraft.
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1. Introduction

Image-Based Visual Servoing (IBVS) has been successfully deployed with

multirotor vehicles [1, 2, 3, 4, 5, 6, 7]. The image-based method aims at directly

driving the visual features in the image space to a desired configuration [8], as

opposed to first converting the image measurements to the position estimate as5

carried out in Position-Based Visual Servoing (PBVS) methods. While advances

in Visual-Inertial Systems (VINSs) have widely led to reasonably accurate esti-

mates of position and translational velocity, as well as localization [9, 10], these

VINSs usually demand substantial computation for the reconstruction of scenes

from numerous tracked points. To minimize the number of the tracked features,10

EKF-based estimators fusing a few image features from the target and IMU

data are also employed to provide the relative position estimates for landing

[11, 12, 13, 14]. However, this method requires the complex process of con-

verting original image features to the pose and it needs prior knowledge of the

structure of the 3D point cloud. Consequently, IBVS methods remain highly15

attractive for certain applications, taking into account computational efficiency.

Still, the nonlinearity of the camera perspective transformation poses a chal-

lenge in designing an IBVS controller for under-actuated multirotor robots. To

address this issue, the raw image projection is typically modified to enable the

visual feature’s kinematics to possess passivity. To date, the control variable20

of visual features is typically formulated either based on the spherical image

projection [15, 2, 3] or image moments accompanied by a virtual camera frame

[16, 4]. The use of image moment-based visual features tends to simplify the

controller design thanks to the resultant kinematics that is consistent with that

of the vehicle’s position [4, 17]. To integrate the image moment to the control25

visual feature, the original visual feature is projected onto an image plane par-

allel to the ground plane, namely a virtual camera frame, with the help of an

external attitude estimator [5, 16, 4, 17].

Applications of IBVS control for aerial vehicles have a practical requirement
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on state estimation from available onboard sensors, such as a camera and an30

Inertial Measurement Unit (IMU). To obtain the estimates of the vehicle’s veloc-

ity in GPS-denied environments, this is typically accomplished with a separate

lightweight velocity estimator using optic flow [18, 19, 20] or an IMU sensor

in conjunction with the vehicle’s model of aerodynamics [21]. Alternatively, a

nonlinear velocity observer can be devised in a unified framework within the35

IBVS controller by means of Lyapunov theory [3, 4]. Nonetheless, these de-

veloped velocity observers require an additional attitude estimator to provide

the rotation between the camera frame and the inertial frame. Furthermore,

the restricted capability of the observer to only estimate the velocity requires

the attitude estimator to transform the desired visual features into the inertial40

frame [3], bringing about an added complication. Otherwise, prior knowledge

of the plane’s inclination against the ground is needed [4].

To radically simplify the deployment of an IBVS controller on small aerial

vehicles by eliminating the need of extra velocity and attitude observers, we

take inspiration from applications of Time-To-Contact (TTC), mathematically45

defined as the ratio of the distance over the velocity, and flow divergence (re-

ciprocal of TTC) for smooth and robust landing [22, 23] or collision avoidance

in cluttered environments [24] with rotorcraft. The controllers design based on

TTC benefits from the sole dependence on a monocular camera without aided

sensory measurements from an accelerometer [19] or vehicle’s motor thrust com-50

mands [3] as it is no longer necessary to recover the metric scale for estimating

the absolute velocity.

This paper offers an alternative IBVS control strategy in conjunction with an

EKF-based estimator to position a rotorcraft against a visual target. Compared

to existing virtual camera-based methods [5, 16, 4, 17], the proposed framework55

exhibits highly comparable tracking performance but is the first to incorporate

the ratio velocity into the IBVS control law instead of absolute velocity. This

offers the benefit of eliminating the dependence on: i) an additional attitude es-

timator in the position loop, ii) prior knowledge of the target plane’s inclination,

and iii) metric scale cues for inferring the translational velocity (such as accel-60
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eration, or command inputs [3]). To achieve this, the visual feature projected

onto the virtual image plane is correlated to the target plane’s normal instead of

directly aligning the camera plane with the ground. The target plane’s normal

can be inferred from visual feedback. This dispenses the need for an additional

attitude estimator and prior knowledge of plane’s inclination. Another bene-65

ficial outcome is that the ratio velocity (velocity over the orthogonal distance

from the camera to the target) scaled by the image moment exhibits consistent

dynamics with the linear velocity, but these variables can be recovered with

only monocular camera as found in [25, 23]. The use of ratio velocity, therefore,

renders a metric scale cues unnecessary.70

To supply the IBVS controller with the feedback of ratio velocity and other

quantities required, a robust and computationally efficient estimator is devised.

Relying on only a few tracking features, the proposed Extended Kalman Filter

(EKF) requires only a gyroscope and a monocular camera to deduce the ratio

velocity, target plane’s inclination, and the current attitude error. Compared to75

existing IBVS control frameworks with an onboard observer [3, 4], the proposed

control and estimation scheme eliminate the need for both an external attitude

estimator in the position control loop and prior knowledge of the target’s in-

clination to generate the desired force commands. To accomplish this, a line

segment measurement model is developed to supplement the continuous homog-80

raphy measurement [19] in order to suppress the drift of the estimated target

plane’s normal when the vehicle is motionless. The proposed control technique

arguably shares a similar motivation to [26]. However, the development in [26]

was specifically designed for flights in a corridor flight by tracking lines created

by the intersection of the side walls and the ceiling/ground whereas the pro-85

posed approach exploits point features for the derivation of the control law to

track a planar target. This renders the proposed method applicable to more

general flight scenarios.

The rest of this paper is structured as follows. Section 2 recalls the dynamic

model of multirotor vehicles. Section 3 introduces the image feature and its90

dynamics. In Section 4, the formulation of the proposed IBVS controller is
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Original image plane

Virtual image plane

Target plane

Figure 1: Drawing of the coordinate frames and image projection. The robot is positioned

above a planar target. The coordinates I = {OI ,xI ,yI ,zI} is the inertial frame, C =

{OCB,xC ,yC ,zC} is the camera frame, V = {OV ,xV ,yV ,zV} is the virtual camera frame,

and T = {OT ,xT ,yT ,zT } is the target’s frame. Red, green and blue lines represents x, y and

z axes of the frames. The robot body frame is assumed aligned with the camera frame. A finite

number of non-collinear points (shown as Pi and Pj) on the target plane with a unit normal

µ are projected onto the image plane of the camera C at z = 1, resulting in a corresponding

projection pi. Meanwhile, these points can also be projected onto the virtual image plane

that is parallel to the target at a unit distance (d = 1) from the camera. A visual feature

corresponding to Pi, located on the virtual image plane, is defined as fi = Pi/d = pi/µ
Tpi.

The line segment lij from the feature fj to fi always lies on the virtual image plane and is

taken into consideration in the measurement models for the state estimator.

provided, followed by the associated EKF and measurement models in Section 5.

In Section 6, simulation experiments were carried out to evaluate the proposed

method. In Section 7, extensive flight experiments were performed indoor and

outdoor to validate, assess, and benchmark the performance of the proposed95

method. Lastly, a conclusion is provided. Throughout the manuscript, bold

mathematical symbols represent vectors or matrices and regular-weight variables

are used to denote scalar quantities.

5



2. Quadrotor Model

In this section, we briefly recall the quadrotor model. Four coordinate sys-

tems are used throughout this paper as shown in Fig. 1: the inertial frame I =

{OI ,xI ,yI , zI}, the robot body frame B = {OB,xB,yB, zB} attached to the

center of mass (CoM), the camera frame C = {OC ,xC ,yC , zC} with the camera

overseeing the target plane, and the local target frame T = {OT ,xT ,yT , zT }
located at the center of the fiducial marker. For simplicity, the camera frame is

assumed to coincide with the body frame throughout this paper. LetR ∈ SO(3)

denote the rotation matrix from the robot frame B to the inertial frame and

r ∈ R3 be the position of the robot in the inertial frame. The rotation R is

constructed by three sequential rotations about z-y-x axes with Euler angles

ψ, θ and γ denoting the yaw, pitch, and roll, respectively. Both orientation

R and position r constitute the 6-degree-of-freedom (DoF) pose describing the

transformation between body frame B and the inertial frame I. Let v ∈ R3 and

ω ∈ R3 denote the body-centric translational and angular velocities of the robot.

The motion of the quadrotor with mass m and moment of inertial J ∈ R3×3

is dictated by the net force F ∈ R3 and torque Γ ∈ R3 acting on the robot

(defined in the body frame) according to

ṙ = Rv, mv̇ = −m [ω]× v + F , (1)

Ṙ = R [ω]× , Jω̇ = − [ω]× Jω + Γ, (2)

where [ω]× ∈ R3×3 represents the skew-symmetric matrix representation of ω.

The force F , defined in the body frame, is composed of the weight and collective

thrust U produced by four motors

F = mgRTez − Uez, (3)

with ez = [0, 0, 1]T and g = 9.8 ms−2. Anticipating non-aggressive flight tra-100

jectories, aerodynamic drag is neglected in Eqs. (1) and (2).
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Figure 2: Pipeline of the proposed IBVS controller and estimator.

3. Image Features and Dynamics

The visual feature selection is crucial for the formulation of an IBVS con-

troller since a different choice of visual features leads to distinct system dynamics

and therefore the design of the IBVS controller. This section details the develop-105

ment of the proposed visual features for the IBVS controller. The center image

moment [27] is leveraged because the incorporation of the center image moment

enables the visual feature to behave consistently between the image space and

Cartesian space as acknowledged by [2, 16], in contrast to the alternative spher-

ical image feature [3]. However, to address the underactuation of rotorcrafts,110

the image moment should be calculated with the projection onto an image plane

parallel to the target. Consequently, we begin with the image projection onto

a virtual image plane with the normal vector identical to that of the target at

unit distance to the camera center, notated as the virtual image plane at d = 1.

Subsequently, the visual feature for IBVS control and its dynamics are derived.115

3.1. Image Projection

As illustrated in Fig. 1, a point on the target plane is observed by a camera

attached to the quadrotor, resulting in the coordinate P = [Px, Py, Pz]
T in the

camera frame. The pinhole camera perspectively projects the point onto its

image plane at z = 1 (this eliminates the need to explicitly include the focal

length in the analysis), corresponding to the homogeneous image coordinate

p = P /Pz. A visual feature f ∈ R3 is defined based on the projection of P

7



onto the virtual plane parallel to the target plane at the unit distance from the

camera center:

f =
P

d
=

P

P Tµ
=

p

pTµ
, (4)

with d = P Tµ denoting the orthogonal distance of the camera center to the

target plane and µ ∈ S2 denoting the unit normal vector of the target plane.

Since the motions of point P and distance follow

Ṗ = − [ω]× P − v, (5)

ḋ = −dµTϑ, (6)

where ϑ ∈ R3 is the ratio velocity defined as ϑ = v/d. The time derivative of

f is obtained by differentiating Eq. (4) using Eqs. (5) and (6):

ḟ = − [ω]× f − ϑ+ fµTϑ. (7)

3.2. Visual Features for Control and their Dynamics

As depicted in Fig. 1, a collection of non-collinear points Pi (i = 1, . . . , n,

n ≥ 4) lying on the target plane is projected onto the virtual plane at d = 1,

resulting in multiple visual features fi. The centroid of these features is q =

1
n

∑n
i=1 fi and its time derivative is obtained via with the aid of Eq. (7)

q̇ = − [ω]× q − ϑ+ qµTϑ. (8)

Eq. (8) cannot be directly applied to the IBVS control due to the depth am-

biguity. After applying the image moment to the feature centroid q, the visual

feature for control is obtained as

b = q/β, (9)

where β is the root mean square norm of the difference vector between each

feature fi and their centroid q: β2 = 1
n

∑n
i=1 (fi − q)

T
(fi − q). Time differen-

tiating β using Eqs. (7) and (8) yields

β̇ = βµTϑ. (10)

8



Hence, we obtain the time derivative of the control visual feature b by differen-

tiating Eq. (9) and using Eq. (10)

ḃ =− [ω]× b− ν, (11)

with ν = ϑ/β. Considering the robot’s translational dynamics from Eq. (1),

the time derivative of ν can be rewritten as

ν̇ =
v̇

dβ
= − [ω]× ν +

1

mc
F , (12)

where the product c = dβ depends on the relative localization of the features

in the world thanks to the definition in Eq. (4) and fact that d(dβ)/dt = 0

(according to Eqs. (6) and (10)). Time derivative of ν possesses the same120

dynamic behavior to the that of linear velocity (Eq. (1)), but the values of ϑ and

β can be directly inferred from monocular visual cues. Overall, the derivation of

the IBVS control in the following section is based on the translational dynamics

of the control visual feature in Eq. (11) and (12).

4. IBVS Controller125

In this section, we design an IBVS controller through the backstepping

method [3, 4] to ensure the stability of the control law. As depicted in Fig.

2, when applied in conjunction with the estimation scheme in the subsequent

section, the following formulation does not entail the inertial frame as found in

[3, 4, 17] and thereby renders an external attitude estimator dispensable in the130

outer position control loop.

To address the under-actuation problem of multirotor aerial vehicles, the ro-

tation is generally eliminated from the translational dynamics through rotating

the original image plane z = 1 to be parallel to the target plane [4] or trans-

forming the desired and current visual feature to the same frame such as the

inertial frame [3]. In this paper, the desired visual feature is aligned with the

current camera frame [3], δ0 ∈ R3 is defined as the error of the control feature

to be minimized:

δ0 = b−RT
rcbr, (13)
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where Rrc ∈ SO(3) is the rotation matrix from the desired camera frame Cr to

the current camera frame Cc and br is the desired centroid, pre-calculated from

the visual features at the image plane z = 1. These visual features are prepared

in advance either by taking an image at the desired pose and performing the

feature detection or reprojecting the known 3D points onto the image plane at

z = 1. Using Eq. (11), we have

δ̇0 = − [ω]× δ0 − ν, (14)

where we have applied the fact that d
dt

(
RT

rcbr
)
= − [ω]× RT

rcbr. To assure the

stability of δ0, consider the Lyapunov function candidate V0 = 1
2δ

T
0 δ0 with

V̇0 = δT0 δ̇0 = −δT0 ν − δT0 [ω]× δ0 = −δT0 ν. (15)

To guarantee the convergence of V0, we design the auxiliary input ν := k0δ0

with k0 being a positive scalar to be tuned. Consequently, Eq. (15) becomes

V̇0 = −k0δT0 δ0 ≤ 0, (16)

as desired. However, since ν is not the actual input of the system (F ), to attain

ν → k0δ0, we introduce the second error term:

δ1 = δ0 − ν/k0, (17)

or ν = k0 (δ0 − δ1). Substituting this back into Eq. (14), the time derivative of

δ0 becomes

δ̇0 = − [ω]× δ0 − k0 (δ0 − δ1) . (18)

The time evolution of δ1 ∈ R3 is computed from Eqs. (17), (18) and (12),

δ̇1 = − [ω]× δ1 − k0 (δ0 − δ1)−
F

k0mc
, (19)

where the system’s input F emerges. Next, the revised Lyapunov function

including both error terms, δ0 and δ1, is proposed

V1 = V0 +
1

2
δT1 δ1 =

1

2
δT0 δ0 +

1

2
δT1 δ1. (20)
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Using Eqs. (16) and (19), the time derivative of V1 is

V̇1 = −k0δT0 δ0 + k0δ
T
1 δ1 −

δT1 F

k0mc
. (21)

To make V̇1 negative, the chosen control law is

F := k1k0δ1, (22)

with k1 denoting a positive scalar to be tuned. Substituting this back into the

Eq. (21) yields

V̇1 = −k0δT0 δ0 −
(
k1
mc

− k0

)
δT1 δ1. (23)

Recall from Eq. (12) that c is a constant. With the condition k1 > mck0, it

is sufficient to guarantee that the translational dynamics of the visual feature

centroid in Eq. (13) is globally asymptotically stable [28]. To realize the control

law in Eq. (22) with a quadcopter, which is not fully actuated, we assume the

vehicle is able to reach the desired attitude instantaneously since F is always

parallel to the thrust axis (z) of the robot as captured by Eq. (3). For the

implementation, the yaw angle is not directly relevant to F and only needs to

be stabilized. The desired force F = [Fx, Fy, Fz]
T from control law (Eq. (22))

is converted to roll, pitch and thrust references:

θr = arcsin

(
− Fx

mg

)
, γr = arcsin

(
− Fy

mg cos θr

)
, (24)

Ur = mg cos θr cos γr − Fz. (25)

Subsequently the inner attitude controller is adopted to generate the torque

that stabilizes the robot to the reference orientation according to the rotational

dynamics in Eq. (2).

As presented in the subsequent section, the required feedbacks of b and135

ν for the proposed IBVS method can be recovered using only monocular and

gyroscope measurements. This eliminates the need of additional attitude esti-

mator and prior knowledge of plane’s inclination to generate the attitude and

thrust setpoints compared to existing prior virtual camera-based IBVS methods

[5, 16, 4].140
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5. EKF Estimation Framework

Here, we detail the EKF-based observer for estimating the quantities re-

quired by the proposed control law: i) the ratio velocity ϑ, ii) the plane unit

normal µ, and iii) the rotation from the reference camera frame to the current

camera frame Rrc. The unified formulation relaxes the dependence on an addi-145

tional attitude estimator as well as a scale-aided sensor or knowledge, such as

an accelerometer and motor thrust used in [4, 17, 3, 5], to generate the desired

force command.

In the proposed EKF, the state and covariance propagation is carried out

once the gyroscope measurements arrive whereas the main state update step150

leverages tracked image corners as visual features. We follow the EKF state

prediction and update routine detailed in [19].

5.1. State Definition and Prediction

The state vector is composed of the following elements:

x := (ϑ,µs,Rrc) , (26)

where µs ∈ SO(3) is a representation of the rotation that satisfies µ = µs(ez).

This implementation resolves the singularity issue and brings about relatively155

simple differentials [9].

The state prediction begins with the continuous dynamic model of the state

x:

ϑ̇ = a/d+ (µTϑI3 − [ω]×)ϑ+wϑ, (27)

µ̇s = N(µs)
Tω +wµ, Ṙrc = Rrc [ω]× , (28)

where a is the robot acceleration expressed in the camera frame and I3 is the

3 × 3 identity. The angular velocity ω is determined from the readings from

the gyroscope measurements ωm after subtractions of predetermined biases bω

wω: ω = ωm − bω. The terms wi’s are zero-mean Gaussian white noise. The

operator N (•)
T

linearly projects a 3D vector into the 2D tangent space of a
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unit vector in R2 such that N(µs) =
[
µs(ex),µs(ey)

]
, where ex =

[
1, 0, 0

]T
and ey =

[
0, 1, 0

]T
so µs(ei)’s become basis vectors of the coordinate system

[9]. Neglecting the acceleration term, the dynamics of the ratio velocity in Eq.

(27) is approximated as

ϑ̇ ≈ (µTϑI3 − [ω]×)ϑ+wϑ. (29)

This means the temporal change in ϑ attributable to the acceleration is ne-

glected, leaving only the contribution from the linear and angular velocities.

The assumption is reasonable for flights without aggressive maneuvers. More-

over, our preliminary results reveal that the deviation of the predicted ratio160

velocity caused by this approximation can be compensated by the image mea-

surement model thanks to the observability condition of the ratio velocity with

a monocular camera [25, 23].

Despite the continuous-time nature of the system, the implementation of

EKF in the hardware must be discretized (such as by the forward Euler method).165

In the discrete-time domain, once a new IMU dataframe arrives at timestamp

tk, the discretized state xk is propagated from the state xk−1 at timestamp

tk−1.

5.2. Measurement Models

5.2.1. Continuous Homography Measurement Model170

To rectify the prediction drift, the continuous homography equation [20, 19]

is applied to link optic flow from two consecutive frames to the current camera

state.

At time instance tc−1, a point on the surface is projected through the per-

spective transformation onto the image plane at pc−1. After one camera-based

time period δT , the point displaces to a new location pc on the current (new)

image plane according to the motion prescribed by the current state xk. This

displacement can be approximately characterized by the continuous homogra-
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phy equation [19, 20]:

p̄c ≈ p̄c−1 − δT [I2,−p̄c−1]Hk(xk)pc−1 = hC(xk), (30)

where the operator •̄ : R3 → R2 projects the 3D image coordinate into the

inhomogeneous form, [I2,−p̄c−1] refers to the concatenation of two matrices

to form a new matrix, and I2 is a 2 × 2 identity. The matrix Hk ∈ R3×3 is

the continuous homography matrix [19] containing the camera angular velocity,

ratio velocity and plane’s normal:

Hk = − [ω̃k]× − ϑkµ
T
k . (31)

The angular velocity ω̃k is ω averaged over the camera-based time period δT .

The continuous measurement model, Eq. (30), is effective in correcting the175

inaccurate ratio velocity resulting from the approximation made in Eq. (29).

Nevertheless, the drawback of the continuous homographic relationship in Eq.

(31) is that the plane’s normal becomes ambiguous when the ratio velocity ϑk

is near-zero and it is sensitive to the image measurement noise. This issue is

alleviated by a supplementary measurement model below.180

5.2.2. Line Segment Measurement Model

Due to the reduced observability of the normal vector when the ratio velocity

is insufficiently excited, the estimate of the plane normal drifts as soon as the

robot becomes static. Besides, the continuous homography model does not

provide information about the rotation from the desired camera frame to the185

current camera frame. Therefore, a line segment measurement model is devised

to augment the continuous measurement model.

As illustrated in Fig. 1, we focus on the line segment from a visual feature

fi on the virtual image plane at d = 1 to another visual feature fj

lij = fi − fj =
pi

pT
i µ

− pj

pT
j µ

. (32)

This line segment lij ∈ R3, when observed by the desired Cr and current camera
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Cc frames are

lrij =
pr
i

pr
i · µr

−
pr
j

pr
j · µr

, lcij =
pc
i

pc
i · µc

−
pc
j

pc
j · µc

, (33)

where pr
i and pc

i are the image projections of the same points onto the image

plane at z = 1 in the desired and current frames. The normal µc = µk is the

state to be estimated. The normal µr in the desired camera frame is constant190

and obtained when initializing the estimator using the homography decompo-

sition (the homography initialization requires at least four corners due to the

8-DoF homography matrix) [29].

As derived in Appendix B, the same line segment observed under two camera

frames are related by the relative rotation between the frames and a positive

scale factor α. That is,

lrij = αRrcl
c
ij = hL(xk). (34)

Eq. (34) serves as a second measurement model. The scale factor α is to be

marginalized out during the update stage using the technique found in [9].195

5.3. Measurement Vector and State Update

Suppose n corners are employed to form a set of visual features, both con-

tinuous homography and line segment measurement models are applied to con-

struct the measurement vector zk by stacking vectors hC(xk) from Eq. (30)

and hL(xk) from Eq. (34). The homography model constitute 2n elements in

zk as p̄c ∈ R2 (see Eq. (30)). The line segment model produces n(n−1)/2 lines,

each contribute to three elements in zk. In total, this yields zk ∈ R(3n2+n)/2 as

zk = h(xk) + ηk, (35)

where ηk is the observation noise assumed to be zero-mean Gaussian white noise

with covariance Ωk. Subsequently, the Kalman update is carried out:

x+
k = x−

k ⊞∆xk, ∆xk = Kk

(
zk − h(x−

k )
)
. (36)

The boxplus (or boxminus) operator in Eq. (36) behaves as a regular addition

(or subtraction) in the Euclidean space, except when it is applied to unit vectors
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defined on 2-manifolds (S2). Readers are referred to [9] for the detailed definition

of these operators.200

Rather than using a regular Kalman gain for Kk in Eq. (36), we use

the Gauss-Newton Kalman gain [30, 19], which simplifies the process of the

marginalization of α defined in Eq. (34):

Kk =
(
(LT

kΣ
−
k Lk)

−1 + ST
k Ω

−1
k Sk

)−1ST
k Ω

−1
k , (37)

where matrices Lk and Sk are Jacobians [9]:

Lk =
∂x−

k ⊞∆x

∂∆x

(
x+
k ⊟ x−

k

)
, Sk =

∂h(x−
k )

∂x−
k

. (38)

Finally, the state covariance is updated according to

Σ+
k = Σ−

k −KkSkL
T
kΣ

−
k Lk. (39)

Despite some nonlinearity, EKF displays satisfactory performance in practice

when it is initialized with fairly accurate estimates of the rotation and plane’s

normal. This renders further enhancements, such as the iterated EKF scheme

used in our previous work [19] unnecessary.

Regular homography model is another option to suppress the drift of the205

target plane’s normal with the quadrotor approaching zero velocity. Nonethe-

less, that model introduces the unnecessary relative ratio position between two

frames to be included in the state vector. A second drawback is that the drift of

the normal estimation still occurs for the regular homography when the relative

position between the desired and current frame is near-zero.210

6. Simulation Results

The simulation was carried out to assess and validate the proposed IBVS

controller and EKF estimator. The task is to stabilize the quadrotor with

respect to a stationary planar target. Two scenarios were simulated: horizontal

and tilted target planes.215
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Figure 3: Simulation results of the horizontal target plane: time evolution of (a) the visual

feature centroid, (b) position, (c) the feature trajectory in the virtual image plane at z = 1

from the initial point (star) to the desired position (solid circle), (d) the estimates of the

orientation of the current frame with respect to the desired frame, (e) the estimates of the

ratio velocity, and (f) the estimates of the plane’s unit normal. For figures (a) and (b),

the black dashed lines and blue solid lines represent the setpoints and actual values of the

corresponding variables.
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Table 1: RMSE from the simulation.

Flight
eϑ (s−1) eµ (◦) erot (

◦)

DLS CHM DLS CHM DLS CHM

0◦ 0.1 3.3 2.4 61.2 2.4 16.9

35◦ 0.1 3.3 1.1 51.4 1.2 35.4

6.1. Simulation Environments

The quadrotor affixed with a downward-facing camera has the mass m = 0.6

kg and moment of inertial J = diag(9, 9, 12.5)×10−3 kg·m2. The intrinsics cali-

bration parameters of the camera are identical to the actual camera in the suc-

ceeding section, with the focal length of 400 px/m and image size of 640×480 px.220

The zero-mean Gaussian white noises are simulated for the gyroscope (standard

deviation, STD: 1◦/s) and camera measurements (STD: 1 px). The high-gain

attitude controller in the low-level control loop and gyroscope operates at 500

Hz and the IBVS controller runs at 30 Hz based on the sample rate of the cam-

era. The gains for the IBVS control law are k0 = 0.3 and k1 = 0.2. A squared225

fiducial maker with length l = 0.2 m is employed as the target. Four vertices of

the square marker, serving as four visual features, in the target frame T are at

[−l/2,−l/2, 0]T , [l/2,−l/2, 0]T , [l/2, l/2, 0]T and [l/2, l/2, 0]T .

6.2. Simulation Results using the Horizontal Target Plane

The target was placed at the origin of the inertial frame and the orienta-230

tion coincides with the inertial frame. The vehicle’s initial position was set to

[0.3,−0.5,−1.5]T m. The reference visual centroid br and corresponding robot

position were [0, 0, 3.5]T and [0, 0,−0.5]T m respectively.

As shown in Fig. 3 (a)-(c), the actual control feature, robot position and

image features converge to the setpoints after about 3 s. The vehicle remains235

at the equilibrium point for the rest of time. This qualitatively verifies both the

estimation and control framework. Fig. 3 (d)-(f) plot the estimates (DLS) of

Rrc, ϑ, and the plane’s normal µ against the ground truths (GT). The results
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Figure 4: Simulation results of the tilted target plane: time evolution of (a) the visual feature

centroid, (b) position, (c) the feature trajectory in the virtual image planeat z = 1 from the

initial point (star) to the desired position (solid circle), (d) the estimates of the orientation of

the current frame with respect to the desired frame, (e) the estimates of ratio velocity, and

(f) the estimates of plane’s unit normal. For figures (a) and (b), the black dashed lines and

blue solid lines represent the setpoints and actual values of the corresponding variables.
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further attest the performance of the proposed EKF with two measurements

model.240

To further inspect the contribution of the line segment model, the set of

gyroscope and image measurements obtained from the simulated flight is sup-

plied to the EKF, but without using the line segment model. The estimation

results (notated as CHM) are displayed on Fig. 3 (d)-(f). The root mean square

errors (RMSE) of the estimated quantities from both cases (DLS and CHM) are245

listed in Table 1. One can see that the estimates of the plane’s normal and Rrc

from CHM are noticeably inferior whereas the ratio velocity is only marginally

affected. As previously mentioned, the continuous homography measurement

model does not contain cues about the orientation between the desired and

current frame. Meanwhile, the plane’s normal cannot be inferred owing to the250

reduced observability when the vehicle remains stationary.

6.3. Simulation Results using a 35◦-inclined Target

The target was placed at the origin of the inertial frame and rotated 35◦

around the x-axis. The setpoint visual centroid becomes [1, 0.43, 4]T due to

plane inclination. The initial conditions and reference position remain identical255

to those from the horizontal target case.

As shown in Fig. 4 (a)-(f), the results resemble those of the previous case.

Fig. 4 (a)-(c) presents that the vehicle’s position, control variable b and image

features converge to the target configuration in 3 s and subsequently remains

stable. According to Fig. 4 (d)-(f), the performance of the estimator without260

the line segment measurement suffers from notable deviations from the ground-

truth, except for estimates of the ratio velocity. The small oscillations of the

estimates around the ground-truths are caused by the synthetic white noise.

The simulation results collaborate the compatibility of the proposed estimator

to a non-horizontal target.265
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Figure 5: (a) Bebop 2 quadrotor a with downward-facing camera. The Jevois smart camera

package consisting of the IMU, monocular camera and processor was used to detect the target

and deduce the neccessary feedbacks for the proposed IBVS controller. The data was trans-

mitted from the Jevois camera to the mainboard of Bebop 2 through serial communication.

The external motion capture system was used to provide the groundtruth of the estimates.

(b) and (c) Snapshots of the indoor and outdoor flight experiments.

7. Real-world Experimental Evaluation

In this section, indoor and outdoor experiments were conducted to assess

the performance of the proposed IBVS controller and EKF estimator.

7.1. Experimental Setup

As shown in Fig. 5 (a), we employed a commercial quadrotor Parrot Bebop270

2 running open-source Paparazzi software2 as our platform. A motion tracking

system (NaturalPoint, OptiTrack) was used to provide the ground truths. A

JeVois Smart Machine Vision camera was mounted on the robot to provide vi-

2https://wiki.paparazziuav.org/wiki/Main Page
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sual feedback. The camera package contains a Cortex A7 processor from ARM,

AR0135 camera sensor with Field of View (FoV) of 120◦ from ONSemiconduc-275

tor, and ICM-20948 IMU from InvenSense. The relatively large FoV decreases

the chance of losing the target. The IMU outputs angular rates for the EKF

estimator at 100 Hz. The four corners of ArUco fiducial marker [31] with length

l = 17.4 cm were detected on the undistorted image at 30 Hz and tracked as vi-

sual features (four points were found to be sufficient to provide reliable tracking280

performance in the experiments). The corners were then re-projected onto the

image plane at z = 1 using the intrinsic matrix of the pinhole camera model.

To speed up the detection, marker’s locations from the previous image were

used to narrow down the search area in the current image. Data package con-

sisting of four detected corners, ratio velocity, plane’s unit normal and desired285

visual feature centroid was transmitted to the motherboard of Bebop 2 through

serial communication. The onboard autopilot of Bebop 2 generated the desired

vehicle’s attitude via the proposed IBVS controller. The onboard quaternion-

based PD attitude control was implemented through Paparazzi and operated

at 512 Hz for both attitude and angular rate loop to maneuver the robot to290

the desired attitude. For experiments, corners pr in the desired camera frame

were pre-calculated by re-projecting the points on the target to the frame for

simplicity. This requires knowledge of the structure and the inclination of the

target with respect to the gravity. However, the process can be replaced by

taking a picture with the desired camera pose and detecting the corners in ad-295

vance without knowing the orientation of the target. This is unlike the method

in [4] that prior knowledge of the target’s inclination was directly needed by the

controller.

7.2. Flight Evaluation with a Dynamic Horizontal Target

As shown in Fig. 5 (b), a servo motor was employed to construct a moving300

target. The marker target was horizontally attached to an arm connected to

the servo motor so that it could travel along an arc of a semicircle (radius: 50

cm) at a constant angular velocity of 0.3 rad/s (≈ 15 cm/s). To begin, the
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Figure 6: Experimental results with a horizontally moving target. (a) The visual feature

centroid, (b) Position, (c) Ratio velocity, (d) Plane’s unit normal, (e) Velocity from the SOTA

method. (f) Mean and standard deviation of the position errors between the robot and the

target for from the proposed and SOTA methods (t = 17 − 90 s). The ground truths (GT)

are calculated from the motion capture system feedback. For (e), the position error along

z-axis is obtained from the difference between the robot’s altitude and desired height above

the marker (1 m).
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quadrotor was commanded to maneuver to an initial hovering spot about 1.4

m above the stationary marker until approximately t = 1 s with the motion305

capture feedback. Then, the IBVS controller was activated (see Fig. 5 (b) and

the supplementary video). Both visual feature b and position quickly converged

to the desired values and the robot remained stable above the static marker for

10 s as shown in Fig. 6 (a) and (b). The proposed line segment measurement is

vital for suppressing the drift of the normal vector when the robot is motionless.310

After that, the target was actuated to move back and forth along the arc five

times during t = 17 − 90 s. The robot then landed at t = 100 s. The tracking

performance is reflected in the Fig. 6 (a)-(b) and (f). The results in Fig. 6

(a)-(b) demonstrate that the IBVS controller enables the quadrotor to converge

quickly to the desired location despite the large initial deviation in position.315

Then, the position of the robot followed the moving object closely, the vehicle

robustly retained the desired pose with respect to the target, and the error of

the visual feature remains tightly bounded. This is despite the movement of the

target that was not included in the model. The obtained performance manifests

the robustness of the devised strategy.320

Fig. 6 (c)-(d) depicts the estimation results of the normal vector and ratio

velocity. It can be seen that the estimates of these states follow the ground

truths closely except the ratio velocity when the target was moving. This is

because of the assumption that the target remains static. Furthermore, the

average computational time per frame (on Jevious camera system) was 22 ms,325

with the image undistortion (15.1 ms) and tag detection (6.4 ms) accounting

for 98%. The numbers advocates the efficiency of the EKF framework when

applied with a small number of required visual features.

To compare the proposed method against a state-of-the-art (SOTA) vir-

tual camera-based method [4], the same experiment was repeated. To apply330

the SOTA method, an additional Madgwick attitude estimator [32] was imple-

mented on Jevois camera package to deduce the robot’s acceleration at 100 Hz.

Fig. 6 (b) and (f) shows that the position tracking performance of the SOTA

method is indistinguishable from the proposed method. The absolute velocity

24



from the SOTA in Fig. 6 (e) remains mostly close to the ground truth but335

except when the target is in motion due to the static assumption (similar to our

scaled velocity in Fig. 6 (c)). The outcomes confirm that the proposed method

is comparable to the SOTA method but it offers benefits as an additional atti-

tude estimator and prior knowledge of the plane’s inclination are not required.

340

7.3. Flight Experiments with a 35◦-Inclined Target

In addition to the use of ratio velocity in the formulation of IBVS controller

to relax the dependence on sensors with metric scale, the regime can be employed

with an inclined target plane without requiring any prior knowledge or external

attitude estimator in the position control loop as needed in [4]. In this section,345

the proposed control and estimation framework was validated using a static

target plane tilted at 35◦ from the horizon. Other experimental conditions

remained unchanged.

As captured in Fig. 7 (a) and (b), the visual feature and position rapidly

converged to the setpoint at around t = 5 s and remained steady above the target350

for 25 s. Thereafter, the control visual feature setpoint was varied according to

the pre-generated trajectory to let the robot track a circular trajectory for three

cycles without moving the target (t = 27-70 s). The radius of the circle was 0.2

m based on the limited FoV of the camera. Fig. 7 (a) shows that the tracking

error of the visual feature remained bounded. As seen in Fig. 7 (f), the error of355

the control feature δ0 increased during the tracking motion since the proposed

IBVS control law neglects the response time of the vehicle’s low-level attitude

controller.

Fig. 7 (c) and (d) plot the estimates of the ratio velocity and plane’s normal

against the ground-truth. The similarity between them validates the effective-360

ness of the proposed estimator when applied with an inclined target plane.

7.4. Outdoor Experiment

To further assess the performance of the proposed IBVS controller and es-

timator, the outdoor experiment, during which the quadrotor attempted to
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Figure 7: Experimental results with a 35◦-inclined target: time evolution of (a) the measured

visual feature centroid (solid blue line) against the reference (dashed black line), (b) vehicle’s

position (solid blue line) against the position of the fiducial marker (dashed black line), (c)

ratio velocity, and (d) plane’s unit normal. (e) Trajectory of the image coordinate on the

virtual image plane at z = 1 (for t =0-20 s. (f) Mean and standard deviation of the control

feature error δ0 during different flight stages. The tracking performance of the proposed

IBVS controller is reflected in (a) and (b). The estimates of the ratio velocity and plane’s

unit normal from the EKF estimator are compared against the ground truths (GT) from the

motion capture system. The shaded areas in Fig. (a)-(d) represent the stages during which

the Bebop 2 was regulated with the feedback from the motion capture system. In (f), the

shaded areas indicate the stages when the target was motionless (t =2-27 and 70-78 s).
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Figure 8: Results of the outdoor experiment. (a) Composite images demonstrating the tra-

jectory of the radio controlled car (blue circles) and Bebop 2 quadrotor (red circles) from the

top. Time evolution of (b) the measured visual feature centroid (solid blue lines) against the

reference (dashed black line), (c) the estimated ratio velocity against the measurement from

the optical flow and range sensor (notated as GT), (d) the estimated normal vector against

the measurement from the quadrotor’s attitude estimator (notated as GT), and (e) the trans-

lational velocity estimated from the optic flow and range sensors.
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continuously track a relatively fast moving target, was conducted. The fiducial365

marker was attached to a radio-controlled car (see the supplementary video).

As shown in Fig. 8 (a), the car was controlled to execute an M-shaped, followed

by a V-shaped trajectory. The maximum and average velocity of the car were

1.1 and 0.9 m/s, as limited by the FoV of the camera (Fig. 8 (e)). The desired

relative position of the quadrotor was set to [0, 0,−1.4]T m in the maker’s local370

frame T . Other parameter configuration remained unchanged from the previous

experiments.

Fig. 8 (b)-(d) plot the experimental results. In Fig. 8 (b), feedback of the

control visual feature occasionally deviated from the reference when the car had

a non-zero velocity while the robot attempted to minimize the control feature375

error. The reference feature varied more noticeably than in the previous exper-

iments because of the rotation of the target around the z-axis of Rrc present

in the definition of δ0 from Eq. (13). The results, nevertheless, endorse the

robustness of the estimation of Rrc despite the absence of the target’s angular

velocity from the measurements. Moreover, Fig. 8 (c) shows that the estimated380

ratio velocity remained close to the ground truth (obtained from the onboard

optic flow and range sensors with certain degrees of inaccuracy, notated as GT)

when the target was motionless with respect to the inertial frame. For the

estimated normal vector, it could be benchmarked against the the attitude esti-

mates from the onboard Attitude and Heading Reference System (AHRS) as the385

target plane is approximately horizontal. From Fig. 8 (d), one can see that the

estimated normal vector follows the ground truth very closely. Overall, these

results prove the robustness of the IBVS control law and estimator when the

target undergoes relatively fast motion.

8. Conclusion390

In this paper, we have formulated a robust and efficient virtual camera based

IBVS controller and a complementary estimation scheme for small rotorcraft.

The proposed IBVS control law aims at generating attitude references without
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the reliance on an external attitude estimator, prior knowledge of the target’s

inclination and metric scale sensors such as an accelerometer. This is accom-395

plished by associating the control visual feature with the target plane and the

incorporation of the ratio velocity scaled by the image moment to the IBVS

formulation. To supply the required feedback, the estimator has been designed

to simultaneously recover the ratio velocity, plane’s normal and relative rotation

between the desired and current camera frame. To verify the proposed regime,400

we first carried out flight experiments over a horizontal target plane. The target

tracking process featured the movement of the target, proving the robustness to

the designed EKF. The comparison to an established method [4] reveals a highly

comparable tracking performance. The flight experiment was further conducted

over an inclined target, involving the robot executing a horizontal circular tra-405

jectory over the target. The result corroborates the versatility of the framework.

Lastly, the outdoor experiment was performed to continuously track the moving

target involving faster speeds, zigzag path and the varying target orientation

(about the vertical axis). This confirms the robustness of the proposed control

law and estimator. Overall, this work offers an alternative solution for IBVS410

suitable for micro aerial vehicles. Future directions include the estimation of

the scaled velocity of the target to enable the robot to follow a dynamic target

more robustly. This could be further supplemented with a method to deal with

cases where the target is out of the FoV of the camera. Similarly, motion of the

target should be directly incorporated into the model to enhance the tracking415

performance as seen in [11, 12, 14, 13].
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Appendix A. Angular Velocity and Torque as Control Input

Appendix A.1. Angular Velocity as Control Input525

Due to the underactuation issue of the aerial multi-rotor vehicles the desired

force cannot be reached ideally. Thereby, we proceed to the third error term δ2
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to represent the difference between the desired and actual force

δ2 = δ1 −
F

k0k1
, (A.1)

or F = k0k1(δ1 − δ2). Substituting Eq. (A.1) back into Eq. (19), the time

derivative of δ1 becomes

δ̇1 = − [ω]× δ1 − k0δ0 −
(
k1
mc

− k0

)
δ1 +

k1
mc

δ2, (A.2)

and the time derivative of δ2 is given by

δ̇2 =− [ω]× δ2 − k0δ0 −
(
k1
mc

− k0

)
δ1

+
k1
mc

δ2 −
Ḟ + [ω]× F

k0k1
. (A.3)

Next, consider the following Lyapunov function

V2 = V1 +
1

2
δT2 δ2. (A.4)

With the Eqs. (18), (A.2) and (A.3), we have time derivative of V2

V̇2 =− k0δ
T
0 δ0 −

(
k1
mc

− k0

)
δT1 δ1 − k0δ

T
0 δ2 + k0δ

T
1 δ2

+
k1
mc

δT2 δ2 −
1

k0k1
δT2

(
Ḟ + [ω]× F

)
. (A.5)

Let the control input be

Ḟ + [ω]× F = [−ωyU, ωxU,−U̇ ]T , (A.6)

according to the Eq. (3). To generate the angular velocity and thrust set points

using the proposed IBVS regime, the control input is assigned to

Ḟ + [ω]× F := k0k1k2δ2, (A.7)

and Eq. (A.8) becomes

V̇2 =− k0δ
T
0 δ0 −

(
k1
mc

− k0

)
δT1 δ1 −

(
k2 −

k1
mc

)
δT2 δ2

− k0δ0δ2 + k0δ
T
1 δ2. (A.8)
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With the fact that aT b ≤ aT b+bT b
2 , we have the upper bound of V̇2

V̇2 ≤− k0
2
δ0δ0 −

(
k1
mc

− 2k0

)
δT1 δ1

−
(
k2 −

k1
mc

− k0
2

)
δT2 δ2. (A.9)

To make the derivative V̇2 negative, the gains are properly selected as k0 >

0, k1 > 2mck0 and k2 >
k1

mc + k0

2 . Inspecting the Eqs. (A.6) and (A.7), the

force error δ2 in the lateral directions are regulated by the vehicle’s roll (ωx)

and pitch (ωy) attitude as opposed to thrust (U̇) in the vertical direction.

Appendix A.2. Torque as Control Input530

To generate the torque commands, we continue the previous procedure to

obtain the new error

δ3 = δ2 −
1

k0k1k2

(
Ḟ + [ω]× F

)
, (A.10)

or Ḟ + [ω]× F = k0k1k2 (δ2 − δ3), yielding the time derivative of δ2

δ̇2 =− [ω]× δ2 − k0δ0 −
(
k1
mc

− k0

)
δ1

−
(
k2 −

k1
mc

)
δ2 + k2δ3, (A.11)

Time differentiating Eq. (A.10) and using Eq. (A.11), we obtain time derivative

of δ3

δ̇3 =− [ω]× δ3 − k0δ0 −
(
k1
mc

− k0

)
δ1 −

(
k2 −

k1
mc

)
δ2

+ k2δ3 −
1

k0k1k2
Uv (A.12)

where the virtual control input Uv is derived using Eq. (3)

Uv = F̈ + [ω̇]× F + 2 [ω]× Ḟ + [ω]
2
× F ,

= [−ω̇yU − ωyU̇ , ω̇xU + ωxU̇ ,−Ü − (ω2
x + ω2

y)U ]T (A.13)

Now, we consider the following Lyapunov function

V3 = V2 +
1

2
δT3 δ3. (A.14)
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Using Eqs. (18), (A.2), (A.11) and (A.12), the derivative of V3 is given

V̇3 =− k0δ
T
0 δ0 −

(
k1
mc

− k0

)
δT1 δ1 − k0δ

T
0 δ2 + k0δ

T
1 δ2

−
(
k2 −

k1
mc

)
δT2 δ2 − k0δ

T
0 δ3 −

(
k1
mc

− k0

)
δT1 δ3

+
k1
mc

δT2 δ3 + k2δ
T
3 δ3 −

δT3 U
v

k0k1k2
. (A.15)

To make V̇3 negative, the control input is set to

Uv := k0k1k2k3δ3, (A.16)

resulting in

V̇3 =− k0δ
T
0 δ0 −

(
k1
mc

− k0

)
δT1 δ1 −

(
k2 −

k1
mc

)
δT2 δ2

− k0δ
T
0 δ2 + k0δ

T
1 δ2 − k0δ

T
0 δ3 −

(
k1
mc

− k0

)
δT1 δ3

+
k1
mc

δT2 δ3 − (k3 − k2)δ
T
3 δ3, (A.17)

≤−
(
k1
2mc

− 2k0

)
δT1 δ1 −

(
k2 −

3k1
2mc

− k0

)
δT2 δ2

−
(
k3 − k2 −

k1
mc

− k0

)
δT3 δ3. (A.18)

The error δ0, δ1, δ2 and δ3 converges to zero as long as the following condition

is fulfilled

k0 > 0,
k1
2mc

− 2k0 > 0,

k2 −
3k1
2mc

− k0 > 0, k3 − k2 −
k1
mc

− k0 > 0. (A.19)

Appendix B. Derivation of the Line Segment Model

Suppose that one point Pi and Pj are visible from two camera frames: Cr and
Cc. The coordinates of point Pi perceived in these two frames is described by

the homogeneous transformation P r
i = RrcP

c
i + t, where t ∈ R3 is the camera

translation between the frames. The transformation of the displacement vector

Pi − Pj between these two frames is, therefore, independent of t

P r
i − P r

j = Rrc

(
P c

i − P c
j

)
. (B.1)
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Recalling the definition of the visual feature from Eq. (4), the line segments

defined in Eq. (33) is rewritten as

lrij =
P r

i

dr
−

P r
j

dr
=
dc

dr
Rrc

(
P c

i

dc
−

P c
j

dc

)
= αRrcl

c
ij . (B.2)

with α = dc/dr or the ratio of the orthogonal distances to the two camera

frames.
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